-
1
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
November
-
M. Aharon, M. Elad, and A. Bruckstein. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11), November 2006.
-
(2006)
IEEE Transactions on Signal Processing
, vol.54
, Issue.11
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
2
-
-
84898409537
-
Low-complexity single-image super-resolution based on nonnegative neighbor embedding
-
M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. Alberi Morel. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In BMVC, 2012.
-
(2012)
BMVC
-
-
Bevilacqua, M.1
Roumy, A.2
Guillemot, C.3
Alberi Morel, M.-L.4
-
3
-
-
5044219639
-
Super-resolution through neighbor embedding
-
H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution through neighbor embedding. CVPR, 2004.
-
(2004)
CVPR
-
-
Chang, H.1
Yeung, D.-Y.2
Xiong, Y.3
-
4
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
-
(2014)
BMVC
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
5
-
-
84906509108
-
-
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, chapter Deep Network Cascade for Image Super-resolution Springer International Publishing, Cham
-
Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen. Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, chapter Deep Network Cascade for Image Super-resolution, pages 49-64. Springer International Publishing, Cham, 2014.
-
(2014)
Computer Vision-ECCV 2014: 13th European Conference
, pp. 49-64
-
-
Cui, Z.1
Chang, H.2
Shan, S.3
Zhong, B.4
Chen, X.5
-
6
-
-
84932137963
-
Jointly optimized regressors for image super-resolution
-
D. Dai, R. Timofte, and L. Van Gool. Jointly optimized regressors for image super-resolution. Computer Graphics Forum, 34(2):95-104, 2015.
-
(2015)
Computer Graphics Forum
, vol.34
, Issue.2
, pp. 95-104
-
-
Dai, D.1
Timofte, R.2
Van Gool, L.3
-
7
-
-
84921971467
-
Learning a deep convolutional network for image super-resolution
-
C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep convolutional network for image super-resolution. In ECCV, 2014.
-
(2014)
ECCV
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
9
-
-
84873906242
-
Nonlocally centralized sparse representation for image restoration
-
W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally centralized sparse representation for image restoration. TIP, 22(4):1620-1630, 2013.
-
(2013)
TIP
, vol.22
, Issue.4
, pp. 1620-1630
-
-
Dong, W.1
Zhang, L.2
Shi, G.3
Li, X.4
-
10
-
-
79959594311
-
Image deblurring and superresolution by adaptive sparse domain selection and adaptive regularization
-
W. Dong, L. Zhang, G. Shi, and X.Wu. Image deblurring and superresolution by adaptive sparse domain selection and adaptive regularization. TIP, 20(7):1838-1857, 2011.
-
(2011)
TIP
, vol.20
, Issue.7
, pp. 1838-1857
-
-
Dong, W.1
Zhang, L.2
Shi, G.3
Wu, X.4
-
11
-
-
84898773505
-
Accurate blur models vs image priors in single image super-resolution
-
December
-
N. Efrat, D. Glasner, A. Apartsin, B. Nadler, and A. Levin. Accurate blur models vs. image priors in single image super-resolution. In The IEEE International Conference on Computer Vision (ICCV), December 2013.
-
(2013)
The IEEE International Conference on Computer Vision (ICCV)
-
-
Efrat, N.1
Glasner, D.2
Apartsin, A.3
Nadler, B.4
Levin, A.5
-
12
-
-
79955668981
-
Image and video upscaling from local self-examples
-
Apr.
-
G. Freedman and R. Fattal. Image and video upscaling from local self-examples. ACM Trans. Graph., 30(2):12:1-12:11, Apr. 2011.
-
(2011)
ACM Trans. Graph.
, vol.30
, Issue.2
, pp. 121-1211
-
-
Freedman, G.1
Fattal, R.2
-
13
-
-
0036500772
-
Example-based superresolution
-
W. T. Freeman, T. R. Jones, and E. C. Pasztor. Example-based superresolution. IEEE Computer Graphics and Applications, 22(2):56-65, 2002.
-
(2002)
IEEE Computer Graphics and Applications
, vol.22
, Issue.2
, pp. 56-65
-
-
Freeman, W.T.1
Jones, T.R.2
Pasztor, E.C.3
-
15
-
-
77953187337
-
Super-resolution from a single image
-
D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In ICCV, 2009.
-
(2009)
ICCV
-
-
Glasner, D.1
Bagon, S.2
Irani, M.3
-
17
-
-
0026359271
-
Improving resolution by image registration
-
M. Irani and S. Peleg. Improving resolution by image registration. CVGIP, 53(3):231-239, 1991.
-
(1991)
CVGIP
, vol.53
, Issue.3
, pp. 231-239
-
-
Irani, M.1
Peleg, S.2
-
18
-
-
77951623771
-
Single-image super-resolution using sparse regression and natural image prior
-
June
-
K. I. Kim and Y. Kwon. Single-image super-resolution using sparse regression and natural image prior. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(6):1127-1133, June 2010.
-
(2010)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.32
, Issue.6
, pp. 1127-1133
-
-
Kim, K.I.1
Kwon, Y.2
-
20
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001.
-
(2001)
ICCV
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
21
-
-
84898811311
-
Nonparametric blind super-resolution
-
T. Michaeli and M. Irani. Nonparametric blind super-resolution. In ICCV, 2013.
-
(2013)
ICCV
-
-
Michaeli, T.1
Irani, M.2
-
22
-
-
84881080901
-
Combining the power of internal and external denoising
-
April
-
I. Mosseri, M. Zontak, and M. Irani. Combining the power of internal and external denoising. In Computational Photography (ICCP), 2013 IEEE International Conference on, pages 1-9, April 2013.
-
(2013)
Computational Photography (ICCP), 2013 IEEE International Conference on
, pp. 1-9
-
-
Mosseri, I.1
Zontak, M.2
Irani, M.3
-
23
-
-
84901060118
-
A statistical prediction model based on sparse representations for single image super-resolution
-
June
-
T. Peleg and M. Elad. A statistical prediction model based on sparse representations for single image super-resolution. Image Processing, IEEE Transactions on, 23(6):2569-2582, June 2014.
-
(2014)
Image Processing, IEEE Transactions on
, vol.23
, Issue.6
, pp. 2569-2582
-
-
Peleg, T.1
Elad, M.2
-
25
-
-
58149144703
-
Generalizing the nonlocal-means to super-resolution reconstruction
-
M. Protter, M. Elad, H. Takeda, and P. Milanfar. Generalizing the nonlocal-means to super-resolution reconstruction. Image Processing, IEEE Transactions on, 18(1):36-51, 2009.
-
(2009)
Image Processing, IEEE Transactions on
, vol.18
, Issue.1
, pp. 36-51
-
-
Protter, M.1
Elad, M.2
Takeda, H.3
Milanfar, P.4
-
27
-
-
84959234116
-
Fast and accurate image upscaling with super-resolution forests
-
S. Schulter, C. Leistner, and H. Bischof. Fast and accurate image upscaling with super-resolution forests. In CVPR, pages 3791-3799, 2015.
-
(2015)
CVPR
, pp. 3791-3799
-
-
Schulter, S.1
Leistner, C.2
Bischof, H.3
-
28
-
-
77956006189
-
Context-constrained hallucination for image super-resolution
-
J. Sun, J. Zhu, and M. F. Tappen. Context-constrained hallucination for image super-resolution. In CVPR, 2010.
-
(2010)
CVPR
-
-
Sun, J.1
Zhu, J.2
Tappen, M.F.3
-
29
-
-
0002194143
-
Image interpolation and resampling. in I. Bankman, editor
-
Academic Press
-
P. Thévenaz, T. Blu, and M. Unser. Image interpolation and resampling. In I. Bankman, editor, Handbook of Medical Imaging, Processing and Analysis, pages 393-420. Academic Press, 2000.
-
(2000)
Handbook of Medical Imaging, Processing and Analysis
, pp. 393-442
-
-
Thévenaz, P.1
Blu, T.2
Unser, M.3
-
30
-
-
84898792173
-
Anchored neighborhood regression for fast example-based super resolution
-
R. Timofte, V. De Smet, and L. Van Gool. Anchored neighborhood regression for fast example-based super resolution. In ICCV, 2013.
-
(2013)
ICCV
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
31
-
-
84932095280
-
A+: Adjusted anchored neighborhood regression for fast super-resolution
-
R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted anchored neighborhood regression for fast super-resolution. In ACCV, 2014.
-
(2014)
ACCV
-
-
Timofte, R.1
De Smet, V.2
Van Gool, L.3
-
33
-
-
84986289945
-
Seven ways to improve example-based single image super resolution
-
abs/1511.02228
-
R. Timofte, R. Rothe, and L. Van Gool. Seven ways to improve example-based single image super resolution. CoRR, abs/1511.02228, 2015.
-
(2015)
CoRR
-
-
Timofte, R.1
Rothe, R.2
Van Gool, L.3
-
34
-
-
0035680116
-
Rapid object detection using a boosted cascade of simple features
-
P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In CVPR, 2001.
-
(2001)
CVPR
-
-
Viola, P.1
Jones, M.2
-
35
-
-
84973897612
-
Deep networks for image super-resolution with sparse prior
-
December
-
Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang. Deep networks for image super-resolution with sparse prior. In The IEEE International Conference on Computer Vision (ICCV), December 2015.
-
(2015)
The IEEE International Conference on Computer Vision (ICCV)
-
-
Wang, Z.1
Liu, D.2
Yang, J.3
Han, W.4
Huang, T.5
-
36
-
-
84956627607
-
Efficient regression priors for post-processing demosaiced images
-
J. Wu, R. Timofte, and L. Van Gool. Efficient regression priors for post-processing demosaiced images. In ICIP, 2015.
-
(2015)
ICIP
-
-
Wu, J.1
Timofte, R.2
Van Gool, L.3
-
37
-
-
79952529859
-
Exploiting selfsimilarities for single frame super-resolution. in R. Kimmel, R. Klette, and A. Sugimoto, editors
-
Springer Berlin Heidelberg
-
C.-Y. Yang, J.-B. Huang, and M.-H. Yang. Exploiting selfsimilarities for single frame super-resolution. In R. Kimmel, R. Klette, and A. Sugimoto, editors, Computer Vision ACCV 2010, volume 6494 of Lecture Notes in Computer Science, pages 497-510. Springer Berlin Heidelberg, 2011.
-
(2011)
Computer Vision ACCV 2010, Volume 6494 of Lecture Notes in Computer Science
, pp. 497-510
-
-
Yang, C.-Y.1
Huang, J.-B.2
Yang, M.-H.3
-
38
-
-
84887347938
-
Fast image super-resolution based on in-place example regression
-
June
-
J. Yang, Z. Lin, and S. Cohen. Fast image super-resolution based on in-place example regression. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 1059-1066, June 2013.
-
(2013)
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on
, pp. 1059-1066
-
-
Yang, J.1
Lin, Z.2
Cohen, S.3
-
39
-
-
78049312324
-
Image super-resolution via sparse representation
-
J. Yang, J. Wright, T. Huang, and Y. Ma. Image super-resolution via sparse representation. IEEE Trans. Image Process., 19(11):2861-2873, 2010.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, Issue.11
, pp. 2861-2873
-
-
Yang, J.1
Wright, J.2
Huang, T.3
Ma, Y.4
-
40
-
-
51949105499
-
Image super-resolution as sparse representation of raw image patches
-
J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution as sparse representation of raw image patches. In CVPR, 2008.
-
(2008)
CVPR
-
-
Yang, J.1
Wright, J.2
Huang, T.S.3
Ma, Y.4
-
41
-
-
84855655878
-
On single image scale-up using sparse-representations
-
R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In Curves and Surfaces, pages 711-730, 2012.
-
(2012)
Curves and Surfaces
, pp. 711-730
-
-
Zeyde, R.1
Elad, M.2
Protter, M.3
-
42
-
-
84921835242
-
Learning multiple linear mappings for efficient single image super-resolution
-
March
-
K. Zhang, D. Tao, X. Gao, X. Li, and Z. Xiong. Learning multiple linear mappings for efficient single image super-resolution. Image Processing, IEEE Transactions on, 24(3):846-861, March 2015.
-
(2015)
Image Processing, IEEE Transactions on
, vol.24
, Issue.3
, pp. 846-861
-
-
Zhang, K.1
Tao, D.2
Gao, X.3
Li, X.4
Xiong, Z.5
-
43
-
-
84911370719
-
Single image super-resolution using deformable patches
-
June
-
Y. Zhu, Y. Zhang, and A. Yuille. Single image super-resolution using deformable patches. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 2917-2924, June 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 2917-2924
-
-
Zhu, Y.1
Zhang, Y.2
Yuille, A.3
|