메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 7244-7253

ViP-CNN: Visual phrase guided convolutional neural network

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; MESSAGE PASSING; NEURAL NETWORKS;

EID: 85041906062     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.766     Document Type: Conference Paper
Times cited : (224)

References (51)
  • 1
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. TPAMI, 2012.
    • (2012) TPAMI
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 7
    • 85018891340 scopus 로고    scopus 로고
    • Crf-cnn: Modeling structured information in human pose estimation
    • X. Chu, W. Ouyang, X. Wang, et al. Crf-cnn: Modeling structured information in human pose estimation. In NIPS, 2016.
    • (2016) NIPS
    • Chu, X.1    Ouyang, W.2    Wang, X.3
  • 8
    • 84877748784 scopus 로고    scopus 로고
    • Detecting actions, poses, and objects with relational phraselets
    • C. Desai and D. Ramanan. Detecting actions, poses, and objects with relational phraselets. In ECCV, 2012.
    • (2012) ECCV
    • Desai, C.1    Ramanan, D.2
  • 13
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast r-cnn. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 15
    • 84959195179 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Iandola, F.2    Darrell, T.3    Malik, J.4
  • 16
    • 70450155469 scopus 로고    scopus 로고
    • Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers
    • A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In ECCV, 2008.
    • (2008) ECCV
    • Gupta, A.1    Davis, L.S.2
  • 17
    • 84959229874 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In CVPR, 2014.
    • (2014) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 19
    • 84856653718 scopus 로고    scopus 로고
    • Learning cross-modality similarity for multinomial data
    • Y. Jia, M. Salzmann, and T. Darrell. Learning cross-modality similarity for multinomial data. In ICCV, 2011.
    • (2011) ICCV
    • Jia, Y.1    Salzmann, M.2    Darrell, T.3
  • 24
    • 84986331475 scopus 로고    scopus 로고
    • Object detection from video tubelets with convolutional neural networks
    • K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets with convolutional neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Kang, K.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 25
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 26
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. NIPS, 2011.
    • (2011) NIPS
    • Koltun, V.1
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 77955997860 scopus 로고    scopus 로고
    • Efficiently selecting regions for scene understanding
    • M. P. Kumar and D. Koller. Efficiently selecting regions for scene understanding. In CVPR, 2010.
    • (2010) CVPR
    • Kumar, M.P.1    Koller, D.2
  • 33
    • 85035234967 scopus 로고    scopus 로고
    • Visual relationship detection with language priors
    • C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual relationship detection with language priors. In ECCV, 2016.
    • (2016) ECCV
    • Lu, C.1    Krishna, R.2    Bernstein, M.3    Fei-Fei, L.4
  • 37
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 40
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006.
    • (2006) CVPR
    • Russell, B.C.1    Freeman, W.T.2    Efros, A.A.3    Sivic, J.4    Zisserman, A.5
  • 41
    • 80052889458 scopus 로고    scopus 로고
    • Recognition using visual phrases
    • M. A. Sadeghi and A. Farhadi. Recognition using visual phrases. In CVPR, 2011.
    • (2011) CVPR
    • Sadeghi, M.A.1    Farhadi, A.2
  • 44
    • 77955998009 scopus 로고    scopus 로고
    • Connecting modalities: Semisupervised segmentation and annotation of images using unaligned text corpora
    • R. Socher and L. Fei-Fei. Connecting modalities: Semisupervised segmentation and annotation of images using unaligned text corpora. In CVPR, 2010.
    • (2010) CVPR
    • Socher, R.1    Fei-Fei, L.2
  • 45
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1988.
    • (1988) Neural Networks
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.