메뉴 건너뛰기




Volumn 0, Issue , 2016, Pages 316-324

CRF-CNN: Modeling structured information in human pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; FEEDFORWARD NEURAL NETWORKS;

EID: 85018891340     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (92)

References (29)
  • 1
    • 85018886743 scopus 로고    scopus 로고
    • Accessed: 2016-05-20
    • Mpii human pose dataset. http://human-pose.mpi-inf.mpg.de/#related-benchmarks. Accessed: 2016-05-20.
    • Mpii Human Pose Dataset
  • 2
    • 84937873698 scopus 로고    scopus 로고
    • Articulated pose estimation by a graphical model with image dependent pairwise relations
    • X. Chen and A. L. Yuille. Articulated pose estimation by a graphical model with image dependent pairwise relations. In NIPS, 2014.
    • (2014) NIPS
    • Chen, X.1    Yuille, A.L.2
  • 3
    • 85009841575 scopus 로고    scopus 로고
    • Structured feature learning for pose estimation
    • X. Chu, W. Ouyang, H. Li, and X. Wang. Structured feature learning for pose estimation. In CVPR, 2016.
    • (2016) CVPR
    • Chu, X.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 4
    • 84973866177 scopus 로고    scopus 로고
    • Multi-task recurrent neural network for immediacy prediction
    • X Chu, W Ouyang, W Yang, and X Wang. Multi-task recurrent neural network for immediacy prediction. In ICCV, 2015.
    • (2015) ICCV
    • Chu, X.1    Ouyang, W.2    Yang, W.3    Wang, X.4
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 8
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61(1):55-79, 2005.
    • (2005) IJCV , vol.61 , Issue.1 , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 11
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 12
    • 84898472539 scopus 로고    scopus 로고
    • Clustered pose and nonlinear appearance models for human pose estimation
    • S. Johnson and M. Everingham. Clustered pose and nonlinear appearance models for human pose estimation. In BMVC, 2010.
    • (2010) BMVC
    • Johnson, S.1    Everingham, M.2
  • 14
    • 84911383794 scopus 로고    scopus 로고
    • Deepreid: Deep filter pairing neural network for person re-identification
    • Wei Li, Rui Zhao, Tong Xiao, and Xiaogang Wang. Deepreid: Deep filter pairing neural network for person re-identification. In CVPR, 2014.
    • (2014) CVPR
    • Li, W.1    Zhao, R.2    Xiao, T.3    Wang, X.4
  • 15
    • 84965128185 scopus 로고    scopus 로고
    • Deeply learning the messages in message passing inference
    • G. Lin, C. Shen, I. Reid, and A. van den Hengel. Deeply learning the messages in message passing inference. In NIPS, 2015.
    • (2015) NIPS
    • Lin, G.1    Shen, C.2    Reid, I.3    Van Den Hengel, A.4
  • 16
    • 84911409274 scopus 로고    scopus 로고
    • Multi-source deep learning for human pose estimation
    • W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human pose estimation. In CVPR, 2014.
    • (2014) CVPR
    • Ouyang, W.1    Chu, X.2    Wang, X.3
  • 18
    • 84887370243 scopus 로고    scopus 로고
    • Modec: Multimodal decomposable models for human pose estimation
    • B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In CVPR, 2013.
    • (2013) CVPR
    • Sapp, B.1    Taskar, B.2
  • 22
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014.
    • (2014) NIPS
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 23
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 25
    • 80052913131 scopus 로고    scopus 로고
    • Learning hierarchical poselets for human parsing
    • Y. Wang, D. Tran, and Z. Liao. Learning hierarchical poselets for human parsing. In CVPR, 2011.
    • (2011) CVPR
    • Wang, Y.1    Tran, D.2    Liao, Z.3
  • 26
    • 84986264911 scopus 로고    scopus 로고
    • Learning deep feature representations with domain guided dropout for person re-identification
    • Tong Xiao, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. Learning deep feature representations with domain guided dropout for person re-identification. In CVPR, 2016.
    • (2016) CVPR
    • Xiao, T.1    Li, H.2    Ouyang, W.3    Wang, X.4
  • 27
    • 84986295323 scopus 로고    scopus 로고
    • End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation
    • W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end learning of deformable mixture of parts and deep convolutional neural networks for human pose estimation. In CVPR, 2016.
    • (2016) CVPR
    • Yang, W.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 28
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. PAMI, 35(12):2878-2890, 2013.
    • (2013) PAMI , vol.35 , Issue.12 , pp. 2878-2890
    • Yang, Y.1    Ramanan, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.