-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
(Nov)
-
R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6 (Nov):1817-1853, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.K.1
Zhang, T.2
-
3
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (8):1798-1828, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
4
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357, 2002.
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
5
-
-
20444392475
-
-
University of California, Berkeley
-
C. Chen, A. Liaw, and L. Breiman. Using random forest to learn imbalanced data. University of California, Berkeley, pages 1-12, 2004.
-
(2004)
Using Random Forest to Learn Imbalanced Data
, pp. 1-12
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
6
-
-
84887355589
-
Cumulative attribute space for age and crowd density estimation
-
Portland, Oregon, USA
-
K. Chen, S. Gong, T. Xiang, and C. Loy. Cumulative attribute space for age and crowd density estimation. In IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, USA, 2013.
-
(2013)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
Chen, K.1
Gong, S.2
Xiang, T.3
Loy, C.4
-
7
-
-
84959194731
-
Deep domain adaptation for describing people based on fine-grained clothing attributes
-
Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and S. Yan. Deep domain adaptation for describing people based on fine-grained clothing attributes. In IEEE Conference on Computer Vision and Pattern Recognition, pages 5315-5324, 2015.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5315-5324
-
-
Chen, Q.1
Huang, J.2
Feris, R.3
Brown, L.M.4
Dong, J.5
Yan, S.6
-
11
-
-
85041909311
-
-
C. Drummond, R. C. Holte, et al. C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. volume 11, 2003.
-
(2003)
C4. 5, Class Imbalance, and Cost Sensitivity: Why Under-sampling Beats Over-sampling
, vol.11
-
-
Drummond, C.1
Holte, R.C.2
-
12
-
-
84921069139
-
The pascal visual object classes challenge: A retrospective
-
M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision, 111 (1):98-136, 2015.
-
(2015)
International Journal of Computer Vision
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.A.2
Van Gool, L.3
Williams, C.K.4
Winn, J.5
Zisserman, A.6
-
14
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (9):1627-1645, 2010.
-
(2010)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
15
-
-
84899720033
-
Attributebased people search: Lessons learnt from a practical surveillance system
-
R. Feris, R. Bobbitt, L. Brown, and S. Pankanti. Attributebased people search: Lessons learnt from a practical surveillance system. In ACM International Conference on Multimedia Retrieval, page 153, 2014.
-
(2014)
ACM International Conference on Multimedia Retrieval
, pp. 153
-
-
Feris, R.1
Bobbitt, R.2
Brown, L.3
Pankanti, S.4
-
16
-
-
79953050208
-
A dynamic over-sampling procedure based on sensitivity for multi-class problems
-
F. Fernández-Navarro, C. Hervás-Martínez, and P. A. Gutiérrez. A dynamic over-sampling procedure based on sensitivity for multi-class problems. Pattern Recognition, 44 (8):1821-1833, 2011.
-
(2011)
Pattern Recognition
, vol.44
, Issue.8
, pp. 1821-1833
-
-
Fernández-Navarro, F.1
Hervás-Martínez, C.2
Gutiérrez, P.A.3
-
17
-
-
84904612847
-
-
Springer
-
S. Gong, M. Cristani, S. Yan, and C. C. Loy. Person reidentification, volume 1. Springer, 2014.
-
(2014)
Person Reidentification
, vol.1
-
-
Gong, S.1
Cristani, M.2
Yan, S.3
Loy, C.C.4
-
19
-
-
27144501672
-
Borderline-smote: A new over-sampling method in imbalanced data sets learning
-
Springer
-
H. Han, W.-Y. Wang, and B.-H. Mao. Borderline-smote: a new over-sampling method in imbalanced data sets learning. In International Conference on Intelligent Computing, pages 878-887. Springer, 2005.
-
(2005)
International Conference on Intelligent Computing
, pp. 878-887
-
-
Han, H.1
Wang, W.-Y.2
Mao, B.-H.3
-
21
-
-
84986295253
-
Learning deep representation for imbalanced classification
-
C. Huang, Y. Li, C. Change Loy, and X. Tang. Learning deep representation for imbalanced classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5375-5384, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5375-5384
-
-
Huang, C.1
Li, Y.2
Change Loy, C.3
Tang, X.4
-
24
-
-
78650207592
-
Classification of imbalanced data by combining the complementary neural network and smote algorithm
-
Springer
-
P. Jeatrakul, K. W. Wong, and C. C. Fung. Classification of imbalanced data by combining the complementary neural network and smote algorithm. In International Conference on Neural Information Processing, pages 152-159. Springer, 2010.
-
(2010)
International Conference on Neural Information Processing
, pp. 152-159
-
-
Jeatrakul, P.1
Wong, K.W.2
Fung, C.C.3
-
29
-
-
84906493406
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision, pages 740-755, 2014.
-
(2014)
European Conference on Computer Vision
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
31
-
-
84986260103
-
Deepfashion: Powering robust clothes recognition and retrieval with rich annotations
-
Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang. Deepfashion: Powering robust clothes recognition and retrieval with rich annotations. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1096-1104, 2016.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1096-1104
-
-
Liu, Z.1
Luo, P.2
Qiu, S.3
Wang, X.4
Tang, X.5
-
32
-
-
84973917446
-
Deep learning face attributes in the wild
-
Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings of the IEEE International Conference on Computer Vision, pages 3730-3738, 2015.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 3730-3738
-
-
Liu, Z.1
Luo, P.2
Wang, X.3
Tang, X.4
-
36
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1717-1724, 2014.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1717-1724
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
37
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115 (3):211-252, 2015.
-
(2015)
International Journal of Computer Vision
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
39
-
-
84908537903
-
Cnn features off-the-shelf: An astounding baseline for recognition
-
A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an astounding baseline for recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 806-813, 2014.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 806-813
-
-
Sharif Razavian, A.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
40
-
-
84944761614
-
Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection
-
W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang. Deepcontour: A deep convolutional feature learned by positivesharing loss for contour detection. In IEEE Conference on Computer Vision and Pattern Recognition, pages 3982-3991, 2015.
-
(2015)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3982-3991
-
-
Shen, W.1
Wang, X.2
Wang, Y.3
Bai, X.4
Zhang, Z.5
-
43
-
-
61549114384
-
Svms modeling for highly imbalanced classification
-
Y. Tang, Y.-Q. Zhang, N. V. Chawla, and S. Krasser. Svms modeling for highly imbalanced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39 (1):281-288, 2009.
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
, vol.39
, Issue.1
, pp. 281-288
-
-
Tang, Y.1
Zhang, Y.-Q.2
Chawla, N.V.3
Krasser, S.4
-
46
-
-
84911376543
-
Learning fine-grained image similarity with deep ranking
-
J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. Learning fine-grained image similarity with deep ranking. In IEEE Conference on Computer Vision and Pattern Recognition, 2014.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition
-
-
Wang, J.1
Song, Y.2
Leung, T.3
Rosenberg, C.4
Wang, J.5
Philbin, J.6
Chen, B.7
Wu, Y.8
-
50
-
-
84911443783
-
Panda: Pose aligned networks for deep attribute modeling
-
N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. Panda: Pose aligned networks for deep attribute modeling. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1637-1644, 2014.
-
(2014)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1637-1644
-
-
Zhang, N.1
Paluri, M.2
Ranzato, M.3
Darrell, T.4
Bourdev, L.5
-
51
-
-
31344442851
-
Training cost-sensitive neural networks with methods addressing the class imbalance problem
-
Z.-H. Zhou and X.-Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18 (1):63-77, 2006.
-
(2006)
IEEE Transactions on Knowledge and Data Engineering
, vol.18
, Issue.1
, pp. 63-77
-
-
Zhou, Z.-H.1
Liu, X.-Y.2
|