-
2
-
-
85018918155
-
Discovering hidden factors of variation in deep networks
-
Brian Cheung, Jesse A. Livezey, Arjun K. Bansal, and Bruno A. Olshausen. Discovering hidden factors of variation in deep networks. CoRR, abs/1412.6583, 2014.
-
(2014)
CoRR
-
-
Cheung, B.1
Livezey, J.A.2
Bansal, A.K.3
Olshausen, B.A.4
-
3
-
-
84888340666
-
Torch7: A matlab-like environment for machine learning
-
number EPFL-CONF-192376
-
Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like environment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376, 2011.
-
(2011)
BigLearn, NIPS Workshop
-
-
Collobert, R.1
Kavukcuoglu, K.2
Farabet, C.3
-
4
-
-
84965143571
-
Deep generative image models using a laplacian pyramid of adversarial networks
-
Emily Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Denton, E.1
Chintala, S.2
Szlam, A.3
Fergus, R.4
-
5
-
-
84980003413
-
Learning to generate chairs with convolutional neural networks
-
Alexey Dosovitskiy, Jost Tobias Springenberg, and Thomas Brox. Learning to generate chairs with convolutional neural networks. CoRR, abs/1411.5928, 2014.
-
(2014)
CoRR
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Brox, T.3
-
6
-
-
85018872904
-
-
arXivpreprint arXiv:1606.00704
-
Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron Courville. Adversarially learned inference. arXivpreprint arXiv:1606.00704, 2016.
-
(2016)
Adversarially Learned Inference
-
-
Dumoulin, V.1
Belghazi, I.2
Poole, B.3
Lamb, A.4
Arjovsky, M.5
Mastropietro, O.6
Courville, A.7
-
8
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
Athinodoros S Georghiades, Peter N Belhumeur, and David J Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(6):643-660, 2001.
-
(2001)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.S.1
Belhumeur, P.N.2
Kriegman, D.J.3
-
9
-
-
84937849144
-
Generative adversarial networks
-
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. NIPS, 2014.
-
(2014)
NIPS
-
-
Goodfellow, I.J.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.C.7
Bengio, Y.8
-
10
-
-
79959347463
-
Transforming auto-encoders
-
Berlin, Heidelberg Springer-Verlag
-
Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. Transforming auto-encoders. In Proceedings of the 21th International Conference on Artificial Neural Networks - Volume Part I, ICANN'11, pages 44-51, Berlin, Heidelberg, 2011. Springer-Verlag.
-
(2011)
Proceedings of the 21th International Conference on Artificial Neural Networks - Volume Part I, ICANN'11
, pp. 44-51
-
-
Hinton, G.E.1
Krizhevsky, A.2
Wang, S.D.3
-
11
-
-
84930643107
-
Semi-supervised learning with deep generative models
-
Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised learning with deep generative models. In Advances in Neural Information Processing Systems, pages 3581-3589, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 3581-3589
-
-
Kingma, D.P.1
Mohamed, S.2
Rezende, D.J.3
Welling, M.4
-
13
-
-
84965156877
-
Deep convolutional inverse graphics network
-
Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep convolutional inverse graphics network. In Advances in Neural Information Processing Systems, pages 2530-2538, 2015.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2530-2538
-
-
Kulkarni, T.D.1
Whitney, W.F.2
Kohli, P.3
Tenenbaum, J.4
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
16
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, 2004.
-
(2004)
CVPR
-
-
LeCun, Y.1
Huang, F.J.2
Bottou, L.3
-
17
-
-
85083951172
-
The variational fair autoencoder
-
Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The variational fair autoencoder. ICLR, 2016.
-
(2016)
ICLR
-
-
Louizos, C.1
Swersky, K.2
Li, Y.3
Welling, M.4
Zemel, R.5
-
19
-
-
84990054441
-
Deep multi-scale video prediction beyond mean square error
-
Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean square error. ICLR, abs/1511.05440, 2015.
-
(2015)
ICLR
-
-
Mathieu, M.1
Couprie, C.2
LeCun, Y.3
-
21
-
-
84990048986
-
Unsupervised representation learning with deep convolutional generative adversarial networks
-
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, abs/1511.06434, 2015.
-
(2015)
CoRR
-
-
Radford, A.1
Metz, L.2
Chintala, S.3
-
23
-
-
84919832734
-
Learning to disentangle factors of variation with manifold interaction
-
Scott Reed, Kihyuk Sohn, Yuting Zhang, and Honglak Lee. Learning to disentangle factors of variation with manifold interaction. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1431-1439, 2014.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning (ICML-14)
, pp. 1431-1439
-
-
Reed, S.1
Sohn, K.2
Zhang, Y.3
Lee, H.4
-
24
-
-
84965113821
-
Deep visual analogy-making
-
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors Curran Associates, Inc.
-
Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 1252-1260. Curran Associates, Inc., 2015.
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
, pp. 1252-1260
-
-
Reed, S.E.1
Zhang, Y.2
Zhang, Y.3
Lee, H.4
-
26
-
-
0034202338
-
Separating style and content with bilinear models
-
June
-
Joshua B. Tenenbaum and William T. Freeman. Separating style and content with bilinear models. Neural Comput., 12(6):1247-1283, June 2000.
-
(2000)
Neural Comput.
, vol.12
, Issue.6
, pp. 1247-1283
-
-
Tenenbaum, J.B.1
Freeman, W.T.2
|