-
1
-
-
84924578787
-
Interaction of peroxiredoxin v with dihydrolipoamide branched chain transacylase E2 (DBT) in mouse kidney under hypoxia
-
Ahn SH, Yang HY, Tran GB, Kwon J, Son KY, Kim S, Dinh QT, Jung S, Lee HM, Cho KO, and Lee TH. Interaction of peroxiredoxin V with dihydrolipoamide branched chain transacylase E2 (DBT) in mouse kidney under hypoxia. Proteome Sci 13: 4, 2015
-
(2015)
Proteome Sci
, vol.13
, pp. 4
-
-
Ahn, S.H.1
Yang, H.Y.2
Tran, G.B.3
Kwon, J.4
Son, K.Y.5
Kim, S.6
Dinh, Q.T.7
Jung, S.8
Lee, H.M.9
Cho, K.O.10
Lee, T.H.11
-
2
-
-
84882657620
-
Tyrosine kinase signal modulation: A matter of H2O2 membrane permeability?
-
Bertolotti M, Bestetti S, Garcia-Manteiga JM, Medrano-Fernandez I, Mas A, Malosio ML, and Sitia R. Tyrosine kinase signal modulation: a matter of H2O2 membrane permeability? Antioxid Redox Signal 19: 1447-1451, 2013
-
(2013)
Antioxid Redox Signal
, vol.19
, pp. 1447-1451
-
-
Bertolotti, M.1
Bestetti, S.2
Garcia-Manteiga, J.M.3
Medrano-Fernandez, I.4
Mas, A.5
Malosio, M.L.6
Sitia, R.7
-
3
-
-
33144474685
-
Mechanistic insight provided by glutaredoxin within a fusion to redoxsensitive yellow fluorescent protein
-
Bjornberg O, Ostergaard H, and Winther JR. Mechanistic insight provided by glutaredoxin within a fusion to redoxsensitive yellow fluorescent protein. Biochemistry 45: 2362-2371, 2006
-
(2006)
Biochemistry
, vol.45
, pp. 2362-2371
-
-
Bjornberg, O.1
Ostergaard, H.2
Winther, J.R.3
-
4
-
-
79954504166
-
Basic principles and emerging concepts in the redox control of transcription factors
-
Brigelius-Flohe R and Flohe L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid Redox Signal 15: 2335-2381, 2011
-
(2011)
Antioxid Redox Signal
, vol.15
, pp. 2335-2381
-
-
Brigelius-Flohe, R.1
Flohe, L.2
-
5
-
-
84890171973
-
A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein
-
Brown JD, Day AM, Taylor SR, Tomalin LE, Morgan BA, and Veal EA. A peroxiredoxin promotes H2O2 signaling and oxidative stress resistance by oxidizing a thioredoxin family protein. Cell Rep 5: 1425-1435, 2013
-
(2013)
Cell Rep
, vol.5
, pp. 1425-1435
-
-
Brown, J.D.1
Day, A.M.2
Taylor, S.R.3
Tomalin, L.E.4
Morgan, B.A.5
Veal, E.A.6
-
6
-
-
84890195550
-
Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle
-
Calvo IA, Boronat S, Domenech A, Garcia-Santamarina S, Ayte J, and Hidalgo E. Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle. Cell Rep 5: 1413-1424, 2013
-
(2013)
Cell Rep
, vol.5
, pp. 1413-1424
-
-
Calvo, I.A.1
Boronat, S.2
Domenech, A.3
Garcia-Santamarina, S.4
Ayte, J.5
Hidalgo, E.6
-
7
-
-
0001445231
-
Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin
-
Chae HZ, Kim HJ, Kang SW, and Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 45: 101-112, 1999
-
(1999)
Diabetes Res Clin Pract
, vol.45
, pp. 101-112
-
-
Chae, H.Z.1
Kim, H.J.2
Kang, S.W.3
Rhee, S.G.4
-
8
-
-
23844508188
-
The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability
-
Conrad M, Moreno SG, Sinowatz F, Ursini F, Kolle S, Roveri A, Brielmeier M, Wurst W, Maiorino M, and Bornkamm GW. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol 25: 7637-7644, 2005
-
(2005)
Mol Cell Biol
, vol.25
, pp. 7637-7644
-
-
Conrad, M.1
Moreno, S.G.2
Sinowatz, F.3
Ursini, F.4
Kolle, S.5
Roveri, A.6
Brielmeier, M.7
Wurst, W.8
Maiorino, M.9
Bornkamm, G.W.10
-
9
-
-
84884197445
-
Oxidant sensing by reversible disulfide bond formation
-
Cremers CM and Jakob U. Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288: 26489-26496, 2013
-
(2013)
J Biol Chem
, vol.288
, pp. 26489-26496
-
-
Cremers, C.M.1
Jakob, U.2
-
10
-
-
79958242400
-
Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling
-
Cuddihy SL, Winterbourn CC, and Hampton MB. Assessment of redox changes to hydrogen peroxide-sensitive proteins during EGF signaling. Antioxid Redox Signal 15: 167-174, 2011
-
(2011)
Antioxid Redox Signal
, vol.15
, pp. 167-174
-
-
Cuddihy, S.L.1
Winterbourn, C.C.2
Hampton, M.B.3
-
11
-
-
77951222074
-
Hydrogen peroxide-sensitive cysteines in the Sty1 MAPK regulate the transcriptional response to oxidative stress
-
Day AM and Veal EA. Hydrogen peroxide-sensitive cysteines in the Sty1 MAPK regulate the transcriptional response to oxidative stress. J Biol Chem 285: 7505-7516, 2010
-
(2010)
J Biol Chem
, vol.285
, pp. 7505-7516
-
-
Day, A.M.1
Veal, E.A.2
-
12
-
-
0037110454
-
A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation
-
Delaunay A, Pflieger D, Barrault MB, Vinh J, and Toledano MB. A thiol peroxidase is an H2O2 receptor and redoxtransducer in gene activation. Cell 111: 471-481, 2002
-
(2002)
Cell
, vol.111
, pp. 471-481
-
-
Delaunay, A.1
Pflieger, D.2
Barrault, M.B.3
Vinh, J.4
Toledano, M.B.5
-
13
-
-
0030249458
-
Peroxynitrite reaction with carbon dioxide/bicarbonate: Kinetics and influence on peroxynitrite-mediated oxidations
-
Denicola A, Freeman BA, Trujillo M, and Radi R. Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. Arch Biochem Biophys 333: 49-58, 1996
-
(1996)
Arch Biochem Biophys
, vol.333
, pp. 49-58
-
-
Denicola, A.1
Freeman, B.A.2
Trujillo, M.3
Radi, R.4
-
14
-
-
84927922859
-
Enzymatic control of cysteinyl thiol switches in proteins
-
Deponte M and Lillig CH. Enzymatic control of cysteinyl thiol switches in proteins. Biol Chem 396: 401-413, 2015
-
(2015)
Biol Chem
, vol.396
, pp. 401-413
-
-
Deponte, M.1
Lillig, C.H.2
-
15
-
-
84887478834
-
Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system
-
Du Y, Zhang H, Zhang X, Lu J, and Holmgren A. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system. J Biol Chem 288: 32241-32247, 2013
-
(2013)
J Biol Chem
, vol.288
, pp. 32241-32247
-
-
Du, Y.1
Zhang, H.2
Zhang, X.3
Lu, J.4
Holmgren, A.5
-
16
-
-
84965126005
-
Oxidantinduced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2
-
Fernandez-Caggiano M, Schroder E, Cho HJ, Burgoyne J, Barallobre-Barreiro J, Mayr M, and Eaton P. Oxidantinduced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2. J Biol Chem 291: 10399-10410, 2016
-
(2016)
J Biol Chem
, vol.291
, pp. 10399-10410
-
-
Fernandez-Caggiano, M.1
Schroder, E.2
Cho, H.J.3
Burgoyne, J.4
Barallobre-Barreiro, J.5
Mayr, M.6
Eaton, P.7
-
17
-
-
79954542342
-
Factors affecting protein thiol reactivity and specificity in peroxide reduction
-
Ferrer-Sueta G, Manta B, Botti H, Radi R, Trujillo M, and Denicola A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem Res Toxicol 24: 434-450, 2011
-
(2011)
Chem Res Toxicol
, vol.24
, pp. 434-450
-
-
Ferrer-Sueta, G.1
Manta, B.2
Botti, H.3
Radi, R.4
Trujillo, M.5
Denicola, A.6
-
18
-
-
84955696380
-
The impact of thiol peroxidases on redox regulation
-
Flohe L. The impact of thiol peroxidases on redox regulation. Free Radic Res 50: 126-142, 2016
-
(2016)
Free Radic Res
, vol.50
, pp. 126-142
-
-
Flohe, L.1
-
19
-
-
79952582563
-
Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide
-
Fomenko DE, Koc A, Agisheva N, Jacobsen M, Kaya A, Malinouski M, Rutherford JC, Siu KL, Jin DY, Winge DR, and Gladyshev VN. Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide. Proc Natl Acad Sci U S A 108: 2729-2734, 2011
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 2729-2734
-
-
Fomenko, D.E.1
Koc, A.2
Agisheva, N.3
Jacobsen, M.4
Kaya, A.5
Malinouski, M.6
Rutherford, J.C.7
Siu, K.L.8
Jin, D.Y.9
Winge, D.R.10
Gladyshev, V.N.11
-
20
-
-
85000501519
-
Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification
-
Forman HJ, Davies MJ, Kramer AC, Miotto G, Zaccarin M, Zhang H, and Ursini F. Protein cysteine oxidation in redox signaling: caveats on sulfenic acid detection and quantification. Arch Biochem Biophys 617: 26-37, 2017
-
(2017)
Arch Biochem Biophys
, vol.617
, pp. 26-37
-
-
Forman, H.J.1
Davies, M.J.2
Kramer, A.C.3
Miotto, G.4
Zaccarin, M.5
Zhang, H.6
Ursini, F.7
-
21
-
-
75749136883
-
Signaling functions of reactive oxygen species
-
Forman HJ, Maiorino M, and Ursini F. Signaling functions of reactive oxygen species. Biochemistry 49: 835-842, 2010
-
(2010)
Biochemistry
, vol.49
, pp. 835-842
-
-
Forman, H.J.1
Maiorino, M.2
Ursini, F.3
-
23
-
-
84893738731
-
Chemical approaches to detect and analyze protein sulfenic acids
-
Furdui CM and Poole LB. Chemical approaches to detect and analyze protein sulfenic acids. Mass Spectrom Rev 33: 126-146, 2014
-
(2014)
Mass Spectrom Rev
, vol.33
, pp. 126-146
-
-
Furdui, C.M.1
Poole, L.B.2
-
24
-
-
34548163922
-
Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
-
Gallogly MM and Mieyal JJ. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7: 381-391, 2007
-
(2007)
Curr Opin Pharmacol
, vol.7
, pp. 381-391
-
-
Gallogly, M.M.1
Mieyal, J.J.2
-
25
-
-
84875718256
-
Is oxidized thioredoxin a major trigger for cysteine oxidation? Clues from a redox proteomics approach
-
Garcia-Santamarina S, Boronat S, Calvo IA, Rodriguez-Gabriel M, Ayte J, Molina H, and Hidalgo E. Is oxidized thioredoxin a major trigger for cysteine oxidation? Clues from a redox proteomics approach. Antioxid Redox Signal 18: 1549-1556, 2013
-
(2013)
Antioxid Redox Signal
, vol.18
, pp. 1549-1556
-
-
Garcia-Santamarina, S.1
Boronat, S.2
Calvo, I.A.3
Rodriguez-Gabriel, M.4
Ayte, J.5
Molina, H.6
Hidalgo, E.7
-
26
-
-
84899636261
-
Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction
-
Garcia-Santamarina S, Boronat S, and Hidalgo E. Reversible cysteine oxidation in hydrogen peroxide sensing and signal transduction. Biochemistry 53: 2560-2580, 2014
-
(2014)
Biochemistry
, vol.53
, pp. 2560-2580
-
-
Garcia-Santamarina, S.1
Boronat, S.2
Hidalgo, E.3
-
27
-
-
84890120403
-
Sulfenic acid chemistry, detection and cellular lifetime
-
Gupta V and Carroll KS. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta 1840: 847-875, 2014
-
(2014)
Biochim Biophys Acta
, vol.1840
, pp. 847-875
-
-
Gupta, V.1
Carroll, K.S.2
-
28
-
-
44449090114
-
Real-time imaging of the intracellular glutathione redox potential
-
Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, and Dick TP. Real-time imaging of the intracellular glutathione redox potential. Nat Methods 5: 553-559, 2008
-
(2008)
Nat Methods
, vol.5
, pp. 553-559
-
-
Gutscher, M.1
Pauleau, A.L.2
Marty, L.3
Brach, T.4
Wabnitz, G.H.5
Samstag, Y.6
Meyer, A.J.7
Dick, T.P.8
-
29
-
-
70450227216
-
Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases
-
Gutscher M, Sobotta MC, Wabnitz GH, Ballikaya S, Meyer AJ, Samstag Y, and Dick TP. Proximity-based protein thiol oxidation by H2O2-scavenging peroxidases. J Biol Chem 284: 31532-31540, 2009
-
(2009)
J Biol Chem
, vol.284
, pp. 31532-31540
-
-
Gutscher, M.1
Sobotta, M.C.2
Wabnitz, G.H.3
Ballikaya, S.4
Meyer, A.J.5
Samstag, Y.6
Dick, T.P.7
-
30
-
-
84993967413
-
The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling
-
Heppner DE, Hristova M, Dustin CM, Danyal K, Habibovic A, and van der Vliet A. The NADPH oxidases DUOX1 and NOX2 play distinct roles in redox regulation of epidermal growth factor receptor signaling. J Biol Chem 291: 23282-23293, 2016
-
(2016)
J Biol Chem
, vol.291
, pp. 23282-23293
-
-
Heppner, D.E.1
Hristova, M.2
Dustin, C.M.3
Danyal, K.4
Habibovic, A.5
Vander Vliet, A.6
-
31
-
-
85010934333
-
The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies
-
Heppner DE, Janssen-Heininger YM, and van der Vliet A. The role of sulfenic acids in cellular redox signaling: reconciling chemical kinetics and molecular detection strategies. Arch Biochem Biophys 616: 40-46, 2017
-
(2017)
Arch Biochem Biophys
, vol.616
, pp. 40-46
-
-
Heppner, D.E.1
Janssen-Heininger, Y.M.2
Vander Vliet, A.3
-
32
-
-
84901316606
-
Cellular mechanisms and physiological consequences of redox-dependent signalling
-
Holmstrom KM and Finkel T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15: 411-421, 2014
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 411-421
-
-
Holmstrom, K.M.1
Finkel, T.2
-
33
-
-
84988419375
-
Redox-dependent regulation of gluconeogenesis by a novel mechanism mediated by a peroxidatic cysteine of peroxiredoxin
-
Irokawa H, Tachibana T, Watanabe T, Matsuyama Y, Motohashi H, Ogasawara A, Iwai K, Naganuma A, and Kuge S. Redox-dependent regulation of gluconeogenesis by a novel mechanism mediated by a peroxidatic cysteine of peroxiredoxin. Sci Rep 6: 33536, 2016
-
(2016)
Sci Rep
, vol.6
, pp. 33536
-
-
Irokawa, H.1
Tachibana, T.2
Watanabe, T.3
Matsuyama, Y.4
Motohashi, H.5
Ogasawara, A.6
Iwai, K.7
Naganuma, A.8
Kuge, S.9
-
34
-
-
77951241260
-
Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor
-
Iwai K, Naganuma A, and Kuge S. Peroxiredoxin Ahp1 acts as a receptor for alkylhydroperoxides to induce disulfide bond formation in the Cad1 transcription factor. J Biol Chem 285: 10597-10604, 2010
-
(2010)
J Biol Chem
, vol.285
, pp. 10597-10604
-
-
Iwai, K.1
Naganuma, A.2
Kuge, S.3
-
35
-
-
84866357593
-
Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells
-
Jarvis RM, Hughes SM, and Ledgerwood EC. Peroxiredoxin 1 functions as a signal peroxidase to receive, transduce, and transmit peroxide signals in mammalian cells. Free Radic Biol Med 53: 1522-1530, 2012
-
(2012)
Free Radic Biol Med
, vol.53
, pp. 1522-1530
-
-
Jarvis, R.M.1
Hughes, S.M.2
Ledgerwood, E.C.3
-
36
-
-
70450227268
-
Protein engineering of the quaternary sulfiredoxin.peroxiredoxin enzyme substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation
-
Jonsson TJ, Johnson LC, and Lowther WT. Protein engineering of the quaternary sulfiredoxin.peroxiredoxin enzyme. substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation. J Biol Chem 284: 33305-33310, 2009
-
(2009)
J Biol Chem
, vol.284
, pp. 33305-33310
-
-
Jonsson, T.J.1
Johnson, L.C.2
Lowther, W.T.3
-
37
-
-
84861964383
-
Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria
-
Kil IS, Lee SK, Ryu KW, Woo HA, Hu MC, Bae SH, and Rhee SG. Feedback control of adrenal steroidogenesis via H2O2-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol Cell 46: 584-594, 2012
-
(2012)
Mol Cell
, vol.46
, pp. 584-594
-
-
Kil, I.S.1
Lee, S.K.2
Ryu, K.W.3
Woo, H.A.4
Hu, M.C.5
Bae, S.H.6
Rhee, S.G.7
-
38
-
-
34547565424
-
Human peroxiredoxin 1 and 2 are not duplicate proteins: The unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2
-
Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH, and Park YM. Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem 282: 22011-22022, 2007
-
(2007)
J Biol Chem
, vol.282
, pp. 22011-22022
-
-
Lee, W.1
Choi, K.S.2
Riddell, J.3
Ip, C.4
Ghosh, D.5
Park, J.H.6
Park, Y.M.7
-
39
-
-
84861219003
-
Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species
-
Lian FM, Yu J, Ma XX, Yu XJ, Chen Y, and Zhou CZ. Structural snapshots of yeast alkyl hydroperoxide reductase Ahp1 peroxiredoxin reveal a novel two-cysteine mechanism of electron transfer to eliminate reactive oxygen species. J Biol Chem 287: 17077-17087, 2012
-
(2012)
J Biol Chem
, vol.287
, pp. 17077-17087
-
-
Lian, F.M.1
Yu, J.2
Ma, X.X.3
Yu, X.J.4
Chen, Y.5
Zhou, C.Z.6
-
40
-
-
84952660457
-
Control of the pericentrosomal H2O2 level by peroxiredoxin i is critical for mitotic progression
-
Lim JM, Lee KS, Woo HA, Kang D, and Rhee SG. Control of the pericentrosomal H2O2 level by peroxiredoxin I is critical for mitotic progression. J Cell Biol 210: 23-33, 2015
-
(2015)
J Cell Biol
, vol.210
, pp. 23-33
-
-
Lim, J.M.1
Lee, K.S.2
Woo, H.A.3
Kang, D.4
Rhee, S.G.5
-
41
-
-
84901741434
-
Hydrogen peroxide sensing, signaling and regulation of transcription factors
-
Marinho HS, Real C, Cyrne L, Soares H, and Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2: 535-562, 2014
-
(2014)
Redox Biol
, vol.2
, pp. 535-562
-
-
Marinho, H.S.1
Real, C.2
Cyrne, L.3
Soares, H.4
Antunes, F.5
-
42
-
-
77954356493
-
Fluorescent protein-based redox probes
-
Meyer AJ and Dick TP. Fluorescent protein-based redox probes. Antioxid Redox Signal 13: 621-650, 2010
-
(2010)
Antioxid Redox Signal
, vol.13
, pp. 621-650
-
-
Meyer, A.J.1
Dick, T.P.2
-
43
-
-
84964389843
-
Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes
-
Morgan B, Van Laer K, Owusu TN, Ezerina D, Pastor-Flores D, Amponsah PS, Tursch A, and Dick TP. Real-time monitoring of basal H2O2 levels with peroxiredoxin-based probes. Nat Chem Biol 12: 437-443, 2016
-
(2016)
Nat Chem Biol
, vol.12
, pp. 437-443
-
-
Morgan, B.1
Van Laer, K.2
Owusu, T.N.3
Ezerina, D.4
Pastor-Flores, D.5
Amponsah, P.S.6
Tursch, A.7
Dick, T.P.8
-
44
-
-
84978044107
-
Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression
-
Nassour H, Wang Z, Saad A, Papaluca A, Brosseau N, Affar El B, Alaoui-Jamali MA, and Ramotar D. Peroxiredoxin 1 interacts with and blocks the redox factor APE1 from activating interleukin-8 expression. Sci Rep 6: 29389, 2016
-
(2016)
Sci Rep
, vol.6
, pp. 29389
-
-
Nassour, H.1
Wang, Z.2
Saad, A.3
Papaluca, A.4
Brosseau, N.5
Affar El, B.6
Alaoui-Jamali, M.A.7
Ramotar, D.8
-
45
-
-
84975263534
-
The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction
-
Netto LE and Antunes F. The roles of peroxiredoxin and thioredoxin in hydrogen peroxide sensing and in signal transduction. Mol Cells 39: 65-71, 2016
-
(2016)
Mol Cells
, vol.39
, pp. 65-71
-
-
Netto, L.E.1
Antunes, F.2
-
46
-
-
84955507164
-
Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions
-
Netto LE, Oliveira MA, Tairum CA, and Silva Neto JF. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic Res 50: 206-245, 2016
-
(2016)
Free Radic Res
, vol.50
, pp. 206-245
-
-
Netto, L.E.1
Oliveira, M.A.2
Tairum, C.A.3
Silva Neto, J.F.4
-
47
-
-
79551689187
-
Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation
-
Nguyen VD, Saaranen MJ, Karala AR, Lappi AK, Wang L, Raykhel IB, Alanen HI, Salo KE, Wang CC, and Ruddock LW. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J Mol Biol 406: 503-515, 2011
-
(2011)
J Mol Biol
, vol.406
, pp. 503-515
-
-
Nguyen, V.D.1
Saaranen, M.J.2
Karala, A.R.3
Lappi, A.K.4
Wang, L.5
Raykhel, I.B.6
Alanen, H.I.7
Salo, K.E.8
Wang, C.C.9
Ruddock, L.W.10
-
48
-
-
84896823538
-
2-cys peroxiredoxins: Emerging hubs determining redox dependency of Mammalian signaling networks
-
Park J, Lee S, Lee S, and Kang SW. 2-cys peroxiredoxins: emerging hubs determining redox dependency of Mammalian signaling networks. Int J Cell Biol 2014: 715867, 2014
-
(2014)
J Cell Biol
, vol.2014
, pp. 715867
-
-
Park, J.1
Lee, S.2
Lee, S.3
Kang, S.W.4
-
49
-
-
79953871561
-
Glutathionylation of peroxiredoxin i induces decamer to dimers dissociation with concomitant loss of chaperone activity
-
Park JW, Piszczek G, Rhee SG, and Chock PB. Glutathionylation of peroxiredoxin I induces decamer to dimers dissociation with concomitant loss of chaperone activity. Biochemistry 50: 3204-3210, 2011
-
(2011)
Biochemistry
, vol.50
, pp. 3204-3210
-
-
Park, J.W.1
Piszczek, G.2
Rhee, S.G.3
Chock, P.B.4
-
50
-
-
83655163927
-
Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity
-
Paulsen CE, Truong TH, Garcia FJ, Homann A, Gupta V, Leonard SE, and Carroll KS. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat Chem Biol 8: 57-64, 2011
-
(2011)
Nat Chem Biol
, vol.8
, pp. 57-64
-
-
Paulsen, C.E.1
Truong, T.H.2
Garcia, F.J.3
Homann, A.4
Gupta, V.5
Leonard, S.E.6
Carroll, K.S.7
-
51
-
-
84937519769
-
Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling
-
Perkins A, Nelson KJ, Parsonage D, Poole LB, and Karplus PA. Peroxiredoxins: guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem Sci 40: 435-445, 2015
-
(2015)
Trends Biochem Sci
, vol.40
, pp. 435-445
-
-
Perkins, A.1
Nelson, K.J.2
Parsonage, D.3
Poole, L.B.4
Karplus, P.A.5
-
52
-
-
84889241342
-
The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin
-
Perkins A, Nelson KJ, Williams JR, Parsonage D, Poole LB, and Karplus PA. The sensitive balance between the fully folded and locally unfolded conformations of a model peroxiredoxin. Biochemistry 52: 8708-8721, 2013
-
(2013)
Biochemistry
, vol.52
, pp. 8708-8721
-
-
Perkins, A.1
Nelson, K.J.2
Williams, J.R.3
Parsonage, D.4
Poole, L.B.5
Karplus, P.A.6
-
53
-
-
84957989959
-
Glutathionylation of the active site cysteines of peroxiredoxin 2 and recycling by glutaredoxin
-
Peskin AV, Pace PE, Behring JB, Paton LN, Soethoudt M, Bachschmid MM, andWinterbourn CC. Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin. J Biol Chem 291: 3053-3062, 2016
-
(2016)
J Biol Chem
, vol.291
, pp. 3053-3062
-
-
Peskin, A.V.1
Pace, P.E.2
Behring, J.B.3
Paton, L.N.4
Soethoudt, M.5
Bachschmid, M.M.6
Winterbourn, C.C.7
-
54
-
-
84874253916
-
Redoxdependent control of FOXO/DAF-16 by transportin-1
-
Putker M, Madl T, Vos HR, Ruiter H, Visscher M, van den Berg MC, Kaplan M, Korswagen HC, Boelens R, Vermeulen M, Burgering BM, and Dansen TB. Redoxdependent control of FOXO/DAF-16 by transportin-1. Mol Cell 49: 730-742, 2013
-
(2013)
Mol Cell
, vol.49
, pp. 730-742
-
-
Putker, M.1
Madl, T.2
Vos, H.R.3
Ruiter, H.4
Visscher, M.5
Vanden Berg, M.C.6
Kaplan, M.7
Korswagen, H.C.8
Boelens, R.9
Vermeulen, M.10
Burgering, B.M.11
Dansen, T.B.12
-
55
-
-
84905823043
-
Intermolecular disulfide-dependent redox signalling
-
Putker M, Vos HR, and Dansen TB. Intermolecular disulfide-dependent redox signalling. Biochem Soc Trans 42: 971-978, 2014
-
(2014)
Biochem Soc Trans
, vol.42
, pp. 971-978
-
-
Putker, M.1
Vos, H.R.2
Dansen, T.B.3
-
56
-
-
84919346793
-
Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling
-
Putker M, Vos HR, van Dorenmalen K, Ruiter H, Duran AG, Snel B, Burgering BM, Vermeulen M, and Dansen TB. Evolutionary acquisition of cysteines determines FOXO paralog-specific redox signaling. Antioxid Redox Signal 22: 15-28, 2015
-
(2015)
Antioxid Redox Signal
, vol.22
, pp. 15-28
-
-
Putker, M.1
Vos, H.R.2
Van Dorenmalen, K.3
Ruiter, H.4
Duran, A.G.5
Snel, B.6
Burgering, B.M.7
Vermeulen, M.8
Dansen, T.B.9
-
57
-
-
84859136836
-
A simple and effective strategy for labeling cysteine sulfenic acid in proteins by utilization of betaketoesters as cleavable probes
-
Qian J, Wani R, Klomsiri C, Poole LB, Tsang AW, and Furdui CM. A simple and effective strategy for labeling cysteine sulfenic acid in proteins by utilization of betaketoesters as cleavable probes. Chem Commun (Camb) 48: 4091-4093, 2012
-
(2012)
Chem Commun (Camb)
, vol.48
, pp. 4091-4093
-
-
Qian, J.1
Wani, R.2
Klomsiri, C.3
Poole, L.B.4
Tsang, A.W.5
Furdui, C.M.6
-
58
-
-
84879867517
-
Peroxiredoxins as preferential targets in H2O2-induced signaling
-
Randall LM, Ferrer-Sueta G, and Denicola A. Peroxiredoxins as preferential targets in H2O2-induced signaling. Methods Enzymol 527: 41-63, 2013
-
(2013)
Methods Enzymol
, vol.527
, pp. 41-63
-
-
Randall, L.M.1
Ferrer-Sueta, G.2
Denicola, A.3
-
59
-
-
84875451079
-
The tumor suppressor Mst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin-1 protein
-
Rawat SJ, Creasy CL, Peterson JR, and Chernoff J. The tumor suppressor Mst1 promotes changes in the cellular redox state by phosphorylation and inactivation of peroxiredoxin-1 protein. J BiolChem288: 8762-8771, 2013
-
(2013)
J BiolChem
, vol.288
, pp. 8762-8771
-
-
Rawat, S.J.1
Creasy, C.L.2
Peterson, J.R.3
Chernoff, J.4
-
60
-
-
33745631769
-
Cell signaling H2O2, a necessary evil for cell signaling
-
Rhee SG. Cell signaling. H2O2, a necessary evil for cell signaling. Science 312: 1882-1883, 2006
-
(2006)
Science
, vol.312
, pp. 1882-1883
-
-
Rhee, S.G.1
-
61
-
-
79951643450
-
Multiple functions of peroxiredoxins: Peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones
-
Rhee SG and Woo HA. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid Redox Signal 15: 781-794, 2011
-
(2011)
Antioxid Redox Signal
, vol.15
, pp. 781-794
-
-
Rhee, S.G.1
Woo, H.A.2
-
62
-
-
84856940017
-
Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides
-
Rhee SG, Woo HA, Kil IS, and Bae SH. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem 287: 4403-4410, 2012
-
(2012)
J Biol Chem
, vol.287
, pp. 4403-4410
-
-
Rhee, S.G.1
Woo, H.A.2
Kil, I.S.3
Bae, S.H.4
-
63
-
-
17644390613
-
Controlled elimination of intracellular H(2)O(2): Regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification
-
Rhee SG, Yang KS, Kang SW, Woo HA, and Chang TS. Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7: 619-626, 2005
-
(2005)
Antioxid Redox Signal
, vol.7
, pp. 619-626
-
-
Rhee, S.G.1
Yang, K.S.2
Kang, S.W.3
Woo, H.A.4
Chang, T.S.5
-
64
-
-
84868206533
-
Understanding the pK(a) of redox cysteines: The key role of hydrogen bonding
-
Roos G, Foloppe N, and Messens J. Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal 18: 94-127, 2013
-
(2013)
Antioxid Redox Signal
, vol.18
, pp. 94-127
-
-
Roos, G.1
Foloppe, N.2
Messens, J.3
-
65
-
-
84952803332
-
Reactions of 1,3-diketones with a dipeptide isothiazolidin-3-one: Toward agents that covalently capture oxidized protein tyrosine phosphatase 1B
-
Ruddraraju KV, Parsons ZD, Llufrio EM, Frost NL, and Gates KS. Reactions of 1,3-diketones with a dipeptide isothiazolidin-3-one: toward agents that covalently capture oxidized protein tyrosine phosphatase 1B. J Org Chem 80: 12015-12026, 2015
-
(2015)
J Org Chem
, vol.80
, pp. 12015-12026
-
-
Ruddraraju, K.V.1
Parsons, Z.D.2
Llufrio, E.M.3
Frost, N.L.4
Gates, K.S.5
-
66
-
-
84969211795
-
Dissecting redox biology using fluorescent protein sensors
-
Schwarzlander M, Dick TP, Meyer AJ, and Morgan B. Dissecting redox biology using fluorescent protein sensors. Antioxid Redox Signal 24: 680-712, 2016
-
(2016)
Antioxid Redox Signal
, vol.24
, pp. 680-712
-
-
Schwarzlander, M.1
Dick, T.P.2
Meyer, A.J.3
Morgan, B.4
-
67
-
-
85009877414
-
Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress
-
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11: 613-619, 2017
-
(2017)
Redox Biol
, vol.11
, pp. 613-619
-
-
Sies, H.1
-
68
-
-
84876188019
-
Exposing cells to H2O2: A quantitative comparison between continuous low-dose and one-time high-dose treatments
-
Sobotta MC, Barata AG, Schmidt U, Mueller S, Millonig G, and Dick TP. Exposing cells to H2O2: a quantitative comparison between continuous low-dose and one-time high-dose treatments. Free Radic Biol Med 60: 325-335, 2013
-
(2013)
Free Radic Biol Med
, vol.60
, pp. 325-335
-
-
Sobotta, M.C.1
Barata, A.G.2
Schmidt, U.3
Mueller, S.4
Millonig, G.5
Dick, T.P.6
-
69
-
-
84924921673
-
Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling
-
Sobotta MC, Liou W, Stocker S, Talwar D, Oehler M, Ruppert T, Scharf AN, and Dick TP. Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling. Nat Chem Biol 11: 64-70, 2015
-
(2015)
Nat Chem Biol
, vol.11
, pp. 64-70
-
-
Sobotta, M.C.1
Liou, W.2
Stocker, S.3
Talwar, D.4
Oehler, M.5
Ruppert, T.6
Scharf, A.N.7
Dick, T.P.8
-
70
-
-
0032189925
-
Disulfide bond formation in the Escherichia coli cytoplasm: An in vivo role reversal for the thioredoxins
-
Stewart EJ, Aslund F, and Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17: 5543-5550, 1998
-
(1998)
EMBO J
, vol.17
, pp. 5543-5550
-
-
Stewart, E.J.1
Aslund, F.2
Beckwith, J.3
-
71
-
-
0842348252
-
An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems
-
Stone JR. An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems. Arch Biochem Biophys 422: 119-124, 2004
-
(2004)
Arch Biochem Biophys
, vol.422
, pp. 119-124
-
-
Stone, J.R.1
-
72
-
-
33646698671
-
Hydrogen peroxide: A signaling messenger
-
Stone JR and Yang S. Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8: 243-270, 2006
-
(2006)
Antioxid Redox Signal
, vol.8
, pp. 243-270
-
-
Stone, J.R.1
Yang, S.2
-
73
-
-
63249111293
-
A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation
-
Tachibana T, Okazaki S, Murayama A, Naganuma A, Nomoto A, and Kuge S. A major peroxiredoxin-induced activation of Yap1 transcription factor is mediated by reduction-sensitive disulfide bonds and reveals a low level of transcriptional activation. J Biol Chem 284: 4464-4472, 2009
-
(2009)
J Biol Chem
, vol.284
, pp. 4464-4472
-
-
Tachibana, T.1
Okazaki, S.2
Murayama, A.3
Naganuma, A.4
Nomoto, A.5
Kuge, S.6
-
74
-
-
78650270477
-
Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum
-
Tavender TJ, Springate JJ, and Bulleid NJ. Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J 29: 4185-4197, 2010
-
(2010)
EMBO J
, vol.29
, pp. 4185-4197
-
-
Tavender, T.J.1
Springate, J.J.2
Bulleid, N.J.3
-
75
-
-
84923301607
-
Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum
-
Teixeira F, Castro H, Cruz T, Tse E, Koldewey P, Southworth DR, Tomas AM, and Jakob U. Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum. Proc Natl Acad Sci U S A 112: E616-E624, 2015
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. E616-E624
-
-
Teixeira, F.1
Castro, H.2
Cruz, T.3
Tse, E.4
Koldewey, P.5
Southworth, D.R.6
Tomas, A.M.7
Jakob, U.8
-
76
-
-
85014574052
-
Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling
-
Travasso RD, Sampaio Dos Aidos F, Bayani A, Abranches P, and Salvador A. Localized redox relays as a privileged mode of cytoplasmic hydrogen peroxide signaling. Redox Biol 12: 233-245, 2017
-
(2017)
Redox Biol
, vol.12
, pp. 233-245
-
-
Travasso, R.D.1
Sampaio Dos Aidos, F.2
Bayani, A.3
Abranches, P.4
Salvador, A.5
-
77
-
-
52049096372
-
Kinetic studies on peroxynitrite reduction by peroxiredoxins
-
Trujillo M, Ferrer-Sueta G, and Radi R. Kinetic studies on peroxynitrite reduction by peroxiredoxins. Methods Enzymol 441: 173-196, 2008
-
(2008)
Methods Enzymol
, vol.441
, pp. 173-196
-
-
Trujillo, M.1
Ferrer-Sueta, G.2
Radi, R.3
-
78
-
-
84978715599
-
Molecular basis for redox activation of epidermal growth factor receptor kinase
-
Truong TH, Ung PM, Palde PB, Paulsen CE, Schlessinger A, and Carroll KS. Molecular basis for redox activation of epidermal growth factor receptor kinase. Cell Chem Biol 23: 837-848, 2016
-
(2016)
Cell Chem Biol
, vol.23
, pp. 837-848
-
-
Truong, T.H.1
Ung, P.M.2
Palde, P.B.3
Paulsen, C.E.4
Schlessinger, A.5
Carroll, K.S.6
-
79
-
-
65349157681
-
Compartmentalization of redox signaling through NADPH oxidase-derived ROS
-
Ushio-Fukai M. Compartmentalization of redox signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 11: 1289-1299, 2009
-
(2009)
Antioxid Redox Signal
, vol.11
, pp. 1289-1299
-
-
Ushio-Fukai, M.1
-
80
-
-
3042755716
-
A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase
-
Veal EA, Findlay VJ, Day AM, Bozonet SM, Evans JM, Quinn J, and Morgan BA. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stressactivated MAP kinase. Mol Cell 15: 129-139, 2004
-
(2004)
Mol Cell
, vol.15
, pp. 129-139
-
-
Veal, E.A.1
Findlay, V.J.2
Day, A.M.3
Bozonet, S.M.4
Evans, J.M.5
Quinn, J.6
Morgan, B.A.7
-
81
-
-
0042733228
-
Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor
-
Veal EA, Ross SJ, Malakasi P, Peacock E, and Morgan BA. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J Biol Chem 278: 30896-30904, 2003
-
(2003)
J Biol Chem
, vol.278
, pp. 30896-30904
-
-
Veal, E.A.1
Ross, S.J.2
Malakasi, P.3
Peacock, E.4
Morgan, B.A.5
-
82
-
-
84887465759
-
Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1alpha to promote oxidative protein folding
-
Wang L, Zhang L, Niu Y, Sitia R, and Wang CC. Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1alpha to promote oxidative protein folding. Antioxid Redox Signal 20: 545-556, 2014
-
(2014)
Antioxid Redox Signal
, vol.20
, pp. 545-556
-
-
Wang, L.1
Zhang, L.2
Niu, Y.3
Sitia, R.4
Wang, C.C.5
-
83
-
-
84870877138
-
Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease
-
Wei PC, Hsieh YH, Su MI, Jiang X, Hsu PH, Lo WT, Weng JY, Jeng YM, Wang JM, Chen PL, Chang YC, Lee KF, Tsai MD, Shew JY, and Lee WH. Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease. Mol Cell 48: 747-759, 2012
-
(2012)
Mol Cell
, vol.48
, pp. 747-759
-
-
Wei, P.C.1
Hsieh, Y.H.2
Su, M.I.3
Jiang, X.4
Hsu, P.H.5
Lo, W.T.6
Weng, J.Y.7
Jeng, Y.M.8
Wang, J.M.9
Chen, P.L.10
Chang, Y.C.11
Lee, K.F.12
Tsai, M.D.13
Shew, J.Y.14
Lee, W.H.15
-
84
-
-
42249088093
-
Reconciling the chemistry and biology of reactive oxygen species
-
Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4: 278-286, 2008
-
(2008)
Nat Chem Biol
, vol.4
, pp. 278-286
-
-
Winterbourn, C.C.1
-
85
-
-
48449107159
-
Thiol chemistry and specificity in redox signaling
-
Winterbourn CC and Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45: 549-561, 2008
-
(2008)
Free Radic Biol Med
, vol.45
, pp. 549-561
-
-
Winterbourn, C.C.1
Hampton, M.B.2
-
86
-
-
84924930301
-
Redox biology: Signaling via a peroxiredoxin sensor
-
Winterbourn CC and Hampton MB. Redox biology: signaling via a peroxiredoxin sensor. Nat Chem Biol 11: 5-6, 2015
-
(2015)
Nat Chem Biol
, vol.11
, pp. 5-6
-
-
Winterbourn, C.C.1
Hampton, M.B.2
-
87
-
-
84975299312
-
Kinetic approaches to measuring peroxiredoxin reactivity
-
Winterbourn CC and Peskin AV. Kinetic approaches to measuring peroxiredoxin reactivity. Mol Cells 39: 26-30, 2016
-
(2016)
Mol Cells
, vol.39
, pp. 26-30
-
-
Winterbourn, C.C.1
Peskin, A.V.2
-
88
-
-
76749102420
-
Inactivation of peroxiredoxin i by phosphorylation allows localized H(2)O(2) accumulation for cell signaling
-
Woo HA, Yim SH, Shin DH, Kang D, Yu DY, and Rhee SG. Inactivation of peroxiredoxin I by phosphorylation allows localized H(2)O(2) accumulation for cell signaling. Cell 140: 517-528, 2010
-
(2010)
Cell
, vol.140
, pp. 517-528
-
-
Woo, H.A.1
Yim, S.H.2
Shin, D.H.3
Kang, D.4
Yu, D.Y.5
Rhee, S.G.6
-
89
-
-
0242668686
-
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
-
Wood ZA, Poole LB, and Karplus PA. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 300: 650-653, 2003
-
(2003)
Science
, vol.300
, pp. 650-653
-
-
Wood, Z.A.1
Poole, L.B.2
Karplus, P.A.3
-
90
-
-
33846456252
-
Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide
-
Yang J, Groen A, Lemeer S, Jans A, Slijper M, Roe SM, den Hertog J, and Barford D. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Biochemistry 46: 709-719, 2007
-
(2007)
Biochemistry
, vol.46
, pp. 709-719
-
-
Yang, J.1
Groen, A.2
Lemeer, S.3
Jans, A.4
Slijper, M.5
Roe, S.M.6
Den Hertog, J.7
Barford, D.8
-
91
-
-
84907339922
-
Site-specific mapping and quantification of protein S-sulphenylation in cells
-
Yang J, Gupta V, Carroll KS, and Liebler DC. Site-specific mapping and quantification of protein S-sulphenylation in cells. Nat Commun 5: 4776, 2014
-
(2014)
Nat Commun
, vol.5
, pp. 4776
-
-
Yang, J.1
Gupta, V.2
Carroll, K.S.3
Liebler, D.C.4
-
92
-
-
84933037897
-
Global, in situ, site-specific analysis of protein S-sulfenylation
-
Yang J, Gupta V, Tallman KA, Porter NA, Carroll KS, and Liebler DC. Global, in situ, site-specific analysis of protein S-sulfenylation. Nat Protoc 10: 1022-1037, 2015
-
(2015)
Nat Protoc
, vol.10
, pp. 1022-1037
-
-
Yang, J.1
Gupta, V.2
Tallman, K.A.3
Porter, N.A.4
Carroll, K.S.5
Liebler, D.C.6
-
93
-
-
78649918283
-
Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin
-
Zito E, Melo EP, Yang Y, Wahlander A, Neubert TA, and Ron D. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol Cell 40: 787-797, 2010
-
(2010)
Mol Cell
, vol.40
, pp. 787-797
-
-
Zito, E.1
Melo, E.P.2
Yang, Y.3
Wahlander, A.4
Neubert, T.A.5
Ron, D.6
|