메뉴 건너뛰기




Volumn 11, Issue 1, 2018, Pages

Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803

Author keywords

Cyanobacteria; Malonyl CoA; Metabolic regulation; Small RNA tools

Indexed keywords

BIOCHEMISTRY; ESCHERICHIA COLI; FATTY ACIDS; GENES; METABOLISM; NUCLEIC ACIDS; RNA; SCAFFOLDS; SOLAR ENERGY;

EID: 85041457826     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-018-1032-0     Document Type: Article
Times cited : (66)

References (58)
  • 1
    • 84862638264 scopus 로고    scopus 로고
    • Green chemistry, biofuels, and biorefinery
    • 1:CAS:528:DC%2BC38Xht1GmtbbL
    • Clark JH, Luque R, Matharu AS. Green chemistry, biofuels, and biorefinery. Annu Rev Chem Biomol Eng. 2012;3:183-207.
    • (2012) Annu Rev Chem Biomol Eng , vol.3 , pp. 183-207
    • Clark, J.H.1    Luque, R.2    Matharu, A.S.3
  • 3
    • 84958779762 scopus 로고    scopus 로고
    • Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals
    • 1:CAS:528:DC%2BC28XisFyhur4%3D
    • Gao X, Sun T, Pei G, Chen L, Zhang W. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Appl Microbiol Biotechnol. 2016;100:3401-13.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 3401-3413
    • Gao, X.1    Sun, T.2    Pei, G.3    Chen, L.4    Zhang, W.5
  • 4
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E. Coli
    • Xu P, Gu Q, Wang W, Wong L, Bower AG, Collins CH, Koffas MA. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun. 2013;4:1409.
    • (2013) Nat Commun , vol.4 , pp. 1409
    • Xu, P.1    Gu, Q.2    Wang, W.3    Wong, L.4    Bower, A.G.5    Collins, C.H.6    Koffas, M.A.7
  • 5
    • 84995469314 scopus 로고    scopus 로고
    • Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis
    • Ruffing AM, Jensen TJ, Strickland LM. Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis. Microb Cell Fact. 2016;15:190.
    • (2016) Microb Cell Fact , vol.15 , pp. 190
    • Ruffing, A.M.1    Jensen, T.J.2    Strickland, L.M.3
  • 6
    • 85006870225 scopus 로고    scopus 로고
    • Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria
    • 1:CAS:528:DC%2BC28XitFGju7rE
    • Ungerer J, Pakrasi HB. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep. 2016;6:39681.
    • (2016) Sci Rep , vol.6 , pp. 39681
    • Ungerer, J.1    Pakrasi, H.B.2
  • 7
    • 2942560804 scopus 로고    scopus 로고
    • Gene regulation by riboswitches
    • 1:CAS:528:DC%2BD2cXksVarsLc%3D
    • Mandal M, Breaker RR. Gene regulation by riboswitches. Nat Rev Mol Cell Biol. 2004;5:451-63.
    • (2004) Nat Rev Mol Cell Biol , vol.5 , pp. 451-463
    • Mandal, M.1    Breaker, R.R.2
  • 8
    • 70349964350 scopus 로고    scopus 로고
    • Automated design of synthetic ribosome binding sites to control protein expression
    • 1:CAS:528:DC%2BD1MXht1WgsbzO
    • Salis HM, Mirsky EA, Voigt CA. Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol. 2009;27:946-50.
    • (2009) Nat Biotechnol , vol.27 , pp. 946-950
    • Salis, H.M.1    Mirsky, E.A.2    Voigt, C.A.3
  • 10
    • 84873596341 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
    • 1:CAS:528:DC%2BC3sXhtFSisbw%3D
    • Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol. 2013;31:170-4.
    • (2013) Nat Biotechnol , vol.31 , pp. 170-174
    • Na, D.1    Yoo, S.M.2    Chung, H.3    Park, H.4    Park, J.H.5    Lee, S.Y.6
  • 11
    • 84898913466 scopus 로고    scopus 로고
    • Small RNA regulators in bacteria: Powerful tools for metabolic engineering and synthetic biology
    • 1:CAS:528:DC%2BC2cXitlSntrw%3D
    • Kang Z, Zhang C, Zhang J, Jin P, Zhang J, Du G, Chen J. Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol. 2014;98:3413-24.
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 3413-3424
    • Kang, Z.1    Zhang, C.2    Zhang, J.3    Jin, P.4    Zhang, J.5    Du, G.6    Chen, J.7
  • 12
    • 84885943611 scopus 로고    scopus 로고
    • Synthetic tolerance: Three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress
    • 1:CAS:528:DC%2BC3sXhsFOksL%2FL
    • Gaida SM, Al-Hinai MA, Indurthi DC, Nicolaou SA, Papoutsakis ET. Synthetic tolerance: three noncoding small RNAs, DsrA, ArcZ and RprA, acting supra-additively against acid stress. Nucleic Acids Res. 2013;41:8726-37.
    • (2013) Nucleic Acids Res , vol.41 , pp. 8726-8737
    • Gaida, S.M.1    Al-Hinai, M.A.2    Indurthi, D.C.3    Nicolaou, S.A.4    Papoutsakis, E.T.5
  • 13
    • 84866559567 scopus 로고    scopus 로고
    • De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells
    • 1:CAS:528:DC%2BC38XhsVOmtb3J
    • Rodrigo G, Landrain TE, Jaramillo A. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proc Natl Acad Sci USA. 2012;109:15271-6.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 15271-15276
    • Rodrigo, G.1    Landrain, T.E.2    Jaramillo, A.3
  • 14
    • 84909963314 scopus 로고    scopus 로고
    • Toehold switches: De-novo-designed regulators of gene expression
    • 1:CAS:528:DC%2BC2cXhvVantbvP
    • Green AA, Silver PA, Collins JJ, Yin P. Toehold switches: de-novo-designed regulators of gene expression. Cell. 2014;159:925-39.
    • (2014) Cell , vol.159 , pp. 925-939
    • Green, A.A.1    Silver, P.A.2    Collins, J.J.3    Yin, P.4
  • 15
    • 69849092387 scopus 로고    scopus 로고
    • Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli
    • Nakashima N, Tamura T. Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res. 2009;37:e103.
    • (2009) Nucleic Acids Res , vol.37 , pp. e103
    • Nakashima, N.1    Tamura, T.2
  • 16
    • 33845667323 scopus 로고    scopus 로고
    • Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli
    • Nakashima N, Tamura T, Good L. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res. 2006;34:e138.
    • (2006) Nucleic Acids Res , vol.34 , pp. e138
    • Nakashima, N.1    Tamura, T.2    Good, L.3
  • 17
    • 84910120084 scopus 로고    scopus 로고
    • Fine-tuning of the fatty acid pathway by synthetic antisense RNA for enhanced (2S)-naringenin production from l-tyrosine in Escherichia coli
    • Wu J, Yu O, Du G, Zhou J, Chen J. Fine-tuning of the fatty acid pathway by synthetic antisense RNA for enhanced (2S)-naringenin production from l-tyrosine in Escherichia coli. Appl Environ Microbiol. 2014;80:7283-92.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 7283-7292
    • Wu, J.1    Yu, O.2    Du, G.3    Zhou, J.4    Chen, J.5
  • 18
    • 84928159353 scopus 로고    scopus 로고
    • Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products
    • 1:CAS:528:DC%2BC2MXmsVaisrg%3D
    • Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y. Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng. 2015;29:217-26.
    • (2015) Metab Eng , vol.29 , pp. 217-226
    • Yang, Y.1    Lin, Y.2    Li, L.3    Linhardt, R.J.4    Yan, Y.5
  • 19
    • 84858692356 scopus 로고    scopus 로고
    • RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq
    • 1:CAS:528:DC%2BC38XkvF2mtb8%3D
    • Argaman L, Elgrably-Weiss M, Hershko T, Vogel J, Altuvia S. RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq. Proc Natl Acad Sci USA. 2012;109:4621-6.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 4621-4626
    • Argaman, L.1    Elgrably-Weiss, M.2    Hershko, T.3    Vogel, J.4    Altuvia, S.5
  • 20
    • 34247158257 scopus 로고    scopus 로고
    • Mechanism of RNA silencing by Hfq-binding small RNAs
    • 1:CAS:528:DC%2BD2sXksFait7k%3D
    • Aiba H. Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol. 2007;10:134-9.
    • (2007) Curr Opin Microbiol , vol.10 , pp. 134-139
    • Aiba, H.1
  • 21
    • 0142240435 scopus 로고    scopus 로고
    • Coincident Hfq binding and RNase e cleavage sites on mRNA and small regulatory RNAs
    • 1:CAS:528:DC%2BD3sXosFOns7w%3D
    • Moll I, Afonyushkin T, Vytvytska O, Kaberdin VR, Blasi U. Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. RNA. 2003;9:1308-14.
    • (2003) RNA , vol.9 , pp. 1308-1314
    • Moll, I.1    Afonyushkin, T.2    Vytvytska, O.3    Kaberdin, V.R.4    Blasi, U.5
  • 22
    • 84992162165 scopus 로고    scopus 로고
    • Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs
    • 1:CAS:528:DC%2BC28XhtlCht7bN
    • Cho C, Lee SY. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs. Biotechnol Bioeng. 2017;114:374-83.
    • (2017) Biotechnol Bioeng , vol.114 , pp. 374-383
    • Cho, C.1    Lee, S.Y.2
  • 23
    • 84936931687 scopus 로고    scopus 로고
    • Regulatory RNAs in photosynthetic cyanobacteria
    • 1:CAS:528:DC%2BC2sXhs1agsbzI
    • Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev. 2015;39:301-15.
    • (2015) FEMS Microbiol Rev , vol.39 , pp. 301-315
    • Kopf, M.1    Hess, W.R.2
  • 24
    • 85027236041 scopus 로고    scopus 로고
    • A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing
    • Sun T, Pei G, Wang J, Chen L, Zhang W. A novel small RNA CoaR regulates coenzyme A biosynthesis and tolerance of Synechocystis sp. PCC6803 to 1-butanol possibly via promoter-directed transcriptional silencing. Biotechnol Biofuels. 2017;10:42.
    • (2017) Biotechnol Biofuels , vol.10 , pp. 42
    • Sun, T.1    Pei, G.2    Wang, J.3    Chen, L.4    Zhang, W.5
  • 25
    • 85014479684 scopus 로고    scopus 로고
    • Small antisense RNA RblR positively regulates RuBisCo in Synechocystis sp. PCC 6803
    • Hu J, Li T, Xu W, Zhan J, Chen H, He C, Wang Q. Small antisense RNA RblR positively regulates RuBisCo in Synechocystis sp. PCC 6803. Front Microbiol. 2017;8:231.
    • (2017) Front Microbiol. , vol.8 , pp. 231
    • Hu, J.1    Li, T.2    Xu, W.3    Zhan, J.4    Chen, H.5    He, C.6    Wang, Q.7
  • 26
    • 84965157479 scopus 로고    scopus 로고
    • Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. Strain PCC 7002
    • 1:CAS:528:DC%2BC2MXhsVGis7%2FI
    • Zess EK, Begemann MB, Pfleger BF. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng. 2016;113:424-32.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 424-432
    • Zess, E.K.1    Begemann, M.B.2    Pfleger, B.F.3
  • 27
    • 79952106852 scopus 로고    scopus 로고
    • Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria
    • 1:CAS:528:DC%2BC3MXjsFaksrc%3D
    • Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng. 2011;13:169-76.
    • (2011) Metab Eng , vol.13 , pp. 169-176
    • Tan, X.1    Yao, L.2    Gao, Q.3    Wang, W.4    Qi, F.5    Lu, X.6
  • 28
    • 84897129361 scopus 로고    scopus 로고
    • Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria
    • Zhou J, Zhang H, Meng H, Zhu Y, Bao G, Zhang Y, Li Y, Ma Y. Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep. 2014;4:4500.
    • (2014) Sci Rep , vol.4 , pp. 4500
    • Zhou, J.1    Zhang, H.2    Meng, H.3    Zhu, Y.4    Bao, G.5    Zhang, Y.6    Li, Y.7    Ma, Y.8
  • 29
    • 0027324796 scopus 로고
    • Differential expression of the psbA genes in the cyanobacterium Synechocystis 6803
    • 1:CAS:528:DyaK3sXltFSntbs%3D
    • Mohamed A, Eriksson J, Osiewacz HD, Jansson C. Differential expression of the psbA genes in the cyanobacterium Synechocystis 6803. Mol Gen Genet. 1993;238:161-8.
    • (1993) Mol Gen Genet , vol.238 , pp. 161-168
    • Mohamed, A.1    Eriksson, J.2    Osiewacz, H.D.3    Jansson, C.4
  • 30
    • 84961794371 scopus 로고    scopus 로고
    • Multiple gene repression in cyanobacteria using CRISPRi
    • 1:CAS:528:DC%2BC2MXitVGiur3L
    • Yao L, Cengic I, Anfelt J, Hudson EP. Multiple gene repression in cyanobacteria using CRISPRi. ACS Synth Biol. 2016;5:207-12.
    • (2016) ACS Synth Biol , vol.5 , pp. 207-212
    • Yao, L.1    Cengic, I.2    Anfelt, J.3    Hudson, E.P.4
  • 32
    • 84870344980 scopus 로고    scopus 로고
    • Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803
    • Grundel M, Scheunemann R, Lockau W, Zilliges Y. Impaired glycogen synthesis causes metabolic overflow reactions and affects stress responses in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology. 2012;158:3032-43.
    • (2012) Microbiology , vol.158 , pp. 3032-3043
    • Grundel, M.1    Scheunemann, R.2    Lockau, W.3    Zilliges, Y.4
  • 33
    • 64049116611 scopus 로고    scopus 로고
    • Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways
    • 1:CAS:528:DC%2BD1MXpsFaqurg%3D
    • Cronan JE, Thomas J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Methods Enzymol. 2009;459:395-433.
    • (2009) Methods Enzymol , vol.459 , pp. 395-433
    • Cronan, J.E.1    Thomas, J.2
  • 35
    • 84885929738 scopus 로고    scopus 로고
    • Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942
    • 1:CAS:528:DC%2BC3sXhs1SmtbfP
    • Nakahira Y, Ogawa A, Asano H, Oyama T, Tozawa Y. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942. Plant Cell Physiol. 2013;54:1724-35.
    • (2013) Plant Cell Physiol , vol.54 , pp. 1724-1735
    • Nakahira, Y.1    Ogawa, A.2    Asano, H.3    Oyama, T.4    Tozawa, Y.5
  • 36
  • 38
    • 85023196596 scopus 로고    scopus 로고
    • IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions
    • Mann M, Wright PR, Backofen R. IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 2017. https://doi.org/10.1093/nar/gkx1279.
    • (2017) Nucleic Acids Res
    • Mann, M.1    Wright, P.R.2    Backofen, R.3
  • 39
    • 84893492693 scopus 로고    scopus 로고
    • Combinatorial optimization of cyanobacterial 2,3-butanediol production
    • 1:CAS:528:DC%2BC2cXjslOmsLs%3D
    • Oliver JW, Machado IM, Yoneda H, Atsumi S. Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng. 2014;22:76-82.
    • (2014) Metab Eng , vol.22 , pp. 76-82
    • Oliver, J.W.1    Machado, I.M.2    Yoneda, H.3    Atsumi, S.4
  • 40
    • 84982860066 scopus 로고    scopus 로고
    • CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. Strain PCC 7002
    • 1:CAS:528:DC%2BC28XhtlSgsb7K
    • Gordon GC, Korosh TC, Cameron JC, Markley AL, Begemann MB, Pfleger BF. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002. Metab Eng. 2016;38:170-9.
    • (2016) Metab Eng , vol.38 , pp. 170-179
    • Gordon, G.C.1    Korosh, T.C.2    Cameron, J.C.3    Markley, A.L.4    Begemann, M.B.5    Pfleger, B.F.6
  • 41
    • 84962046508 scopus 로고    scopus 로고
    • Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids
    • 1:CAS:528:DC%2BC28Xit12rtbw%3D
    • Beld J, Abbriano R, Finzel K, Hildebrand M, Burkart MD. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids. Mol BioSyst. 2016;12:1299-312.
    • (2016) Mol BioSyst , vol.12 , pp. 1299-1312
    • Beld, J.1    Abbriano, R.2    Finzel, K.3    Hildebrand, M.4    Burkart, M.D.5
  • 42
    • 84892558817 scopus 로고    scopus 로고
    • The initiation ketosynthase (FabH) is the sole rate-limiting enzyme of the fatty acid synthase of Synechococcus sp. PCC 7002
    • 1:CAS:528:DC%2BC2cXjslKnsL4%3D
    • Kuo J, Khosla C. The initiation ketosynthase (FabH) is the sole rate-limiting enzyme of the fatty acid synthase of Synechococcus sp. PCC 7002. Metab Eng. 2014;22:53-9.
    • (2014) Metab Eng , vol.22 , pp. 53-59
    • Kuo, J.1    Khosla, C.2
  • 43
    • 84875958424 scopus 로고    scopus 로고
    • Bacterial lipids: Metabolism and membrane homeostasis
    • 1:CAS:528:DC%2BC3sXovVCgsLg%3D
    • Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res. 2013;52:249-76.
    • (2013) Prog Lipid Res , vol.52 , pp. 249-276
    • Parsons, J.B.1    Rock, C.O.2
  • 44
    • 85030148668 scopus 로고    scopus 로고
    • Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli
    • Noh M, Yoo SM, Kim WJ, Lee SY. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst. 2017. https://doi.org/10.1016/j.cels.2017.1008.1016.
    • (2017) Cell Syst
    • Noh, M.1    Yoo, S.M.2    Kim, W.J.3    Lee, S.Y.4
  • 45
    • 84903976212 scopus 로고    scopus 로고
    • Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1
    • Shi S, Chen Y, Siewers V, Nielsen J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio. 2014;5:e01130-01114.
    • (2014) MBio , vol.5 , pp. e01130-e01114
    • Shi, S.1    Chen, Y.2    Siewers, V.3    Nielsen, J.4
  • 46
    • 85009270975 scopus 로고    scopus 로고
    • Malonyl-CoA pathway: A promising route for 3-hydroxypropionate biosynthesis
    • Liu C, Ding Y, Xian M, Liu M, Liu H, Ma Q, Zhao G. Malonyl-CoA pathway: a promising route for 3-hydroxypropionate biosynthesis. Crit Rev Biotechnol. 2017. https://doi.org/10.1080/07388551.2016.1272093.
    • (2017) Crit Rev Biotechnol
    • Liu, C.1    Ding, Y.2    Xian, M.3    Liu, M.4    Liu, H.5    Ma, Q.6    Zhao, G.7
  • 47
    • 85019544318 scopus 로고    scopus 로고
    • Increasing malonyl-CoA derived product through controlling the transcription regulators of phospholipid synthesis in Saccharomyces cerevisiae
    • 1:CAS:528:DC%2BC2sXhs1Gitbs%3D
    • Chen X, Yang X, Shen Y, Hou J, Bao X. Increasing malonyl-CoA derived product through controlling the transcription regulators of phospholipid synthesis in Saccharomyces cerevisiae. ACS Synth Biol. 2017;6:905-12.
    • (2017) ACS Synth Biol , vol.6 , pp. 905-912
    • Chen, X.1    Yang, X.2    Shen, Y.3    Hou, J.4    Bao, X.5
  • 48
    • 58549088724 scopus 로고    scopus 로고
    • A flow cytometry-based screen for synthetic riboswitches
    • 1:CAS:528:DC%2BD1MXktlemug%3D%3D
    • Lynch SA, Gallivan JP. A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res. 2009;37:184-92.
    • (2009) Nucleic Acids Res , vol.37 , pp. 184-192
    • Lynch, S.A.1    Gallivan, J.P.2
  • 50
    • 84876376374 scopus 로고    scopus 로고
    • De novo design of a synthetic riboswitch that regulates transcription termination
    • 1:CAS:528:DC%2BC3sXjtVaitbY%3D
    • Wachsmuth M, Findeiss S, Weissheimer N, Stadler PF, Morl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res. 2013;41:2541-51.
    • (2013) Nucleic Acids Res , vol.41 , pp. 2541-2551
    • Wachsmuth, M.1    Findeiss, S.2    Weissheimer, N.3    Stadler, P.F.4    Morl, M.5
  • 51
    • 84865825138 scopus 로고    scopus 로고
    • Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803
    • 1:CAS:528:DC%2BC38XhslaisrvP
    • Liu J, Chen L, Wang J, Qiao J, Zhang W. Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol Biofuels. 2012;5:68.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 68
    • Liu, J.1    Chen, L.2    Wang, J.3    Qiao, J.4    Zhang, W.5
  • 52
    • 4344679234 scopus 로고    scopus 로고
    • Expression of the heat shock gene hsp16.6 and promoter analysis in the cyanobacterium, Synechocystis sp. PCC 6803
    • 1:CAS:528:DC%2BD2cXntVaqtb4%3D
    • Fang F, Barnum SR. Expression of the heat shock gene hsp16.6 and promoter analysis in the cyanobacterium, Synechocystis sp. PCC 6803. Curr Microbiol. 2004;49:192-8.
    • (2004) Curr Microbiol , vol.49 , pp. 192-198
    • Fang, F.1    Barnum, S.R.2
  • 54
    • 84883386749 scopus 로고    scopus 로고
    • Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803
    • 1:CAS:528:DC%2BC3sXhtlChsbrK
    • Huang S, Chen L, Te R, Qiao J, Wang J, Zhang W. Complementary iTRAQ proteomics and RNA-seq transcriptomics reveal multiple levels of regulation in response to nitrogen starvation in Synechocystis sp. PCC 6803. Mol BioSyst. 2013;9:2565-74.
    • (2013) Mol BioSyst , vol.9 , pp. 2565-2574
    • Huang, S.1    Chen, L.2    Te, R.3    Qiao, J.4    Wang, J.5    Zhang, W.6
  • 55
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method
    • 1:CAS:528:DC%2BD38XhtFelt7s%3D
    • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402-8.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 56
    • 84913529673 scopus 로고    scopus 로고
    • Direct transesterification of fresh microalgal cells
    • 1:CAS:528:DC%2BC2cXhvVGgtrbI
    • Liu J, Liu Y, Wang H, Xue S. Direct transesterification of fresh microalgal cells. Bioresour Technol. 2015;176:284-7.
    • (2015) Bioresour Technol , vol.176 , pp. 284-287
    • Liu, J.1    Liu, Y.2    Wang, H.3    Xue, S.4
  • 57
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • 1:CAS:528:DyaE28XksVehtrY%3D
    • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 58
    • 0014949207 scopus 로고
    • Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4
    • 1:CAS:528:DC%2BD3MXlsFags7s%3D
    • Laemmli UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227:680.
    • (1970) Nature , vol.227 , pp. 680
    • Laemmli, U.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.