메뉴 건너뛰기




Volumn 36, Issue 1, 2018, Pages 95-102

Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency

(22)  Canny, Marella D a   Moatti, Nathalie a   Wan, Leo C K a,b   Fradet Turcotte, Amélie a,e   Krasner, Danielle c   Mateos Gomez, Pedro A d   Zimmermann, Michal a   Orthwein, Alexandre a,e,f,g   Juang, Yu Chi a   Zhang, Wei b   Noordermeer, Sylvie M a   Seclen, Eduardo c   Wilson, Marcus D a   Vorobyov, Andrew b   Munro, Meagan a   Ernst, Andreas b,e,h   Ng, Timothy F a,b   Cho, Tiffany a,b   Cannon, Paula M c   Sidhu, Sachdev S b   more..


Author keywords

[No Author keywords available]

Indexed keywords

DNA; EFFICIENCY; GENE EXPRESSION; MAMMALS; OLIGONUCLEOTIDES;

EID: 85040526330     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.4021     Document Type: Article
Times cited : (178)

References (36)
  • 1
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2
  • 2
    • 84923106217 scopus 로고    scopus 로고
    • Therapeutic genome editing: Prospects and challenges
    • Cox, D.B., Platt, R.J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121-131 (2015).
    • (2015) Nat. Med. , vol.21 , pp. 121-131
    • Cox, D.B.1    Platt, R.J.2    Zhang, F.3
  • 3
    • 84960832490 scopus 로고    scopus 로고
    • Origins of Programmable Nucleases for Genome Engineering
    • Chandrasegaran, S. & Carroll, D. Origins of Programmable Nucleases for Genome Engineering. J. Mol. Biol. 428 5 Pt B, 963-989 (2016).
    • (2016) J. Mol. Biol. , vol.428 , Issue.5 , pp. 963-989
    • Chandrasegaran, S.1    Carroll, D.2
  • 4
    • 85007092835 scopus 로고    scopus 로고
    • The control of DNA repair by the cell cycle
    • Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1-9 (2016).
    • (2016) Nat. Cell Biol. , vol.19 , pp. 1-9
    • Hustedt, N.1    Durocher, D.2
  • 5
    • 84891014338 scopus 로고    scopus 로고
    • Double-strand break repair: 53BP1 comes into focus
    • Panier, S. & Boulton, S.J. Double-strand break repair: 53BP1 comes into focus. Nat. Rev. Mol. Cell Biol. 15, 7-18 (2014).
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 7-18
    • Panier, S.1    Boulton, S.J.2
  • 6
    • 84873085753 scopus 로고    scopus 로고
    • A strategy for modulation of enzymes in the ubiquitin system
    • Ernst, A. et al. A strategy for modulation of enzymes in the ubiquitin system. Science 339, 590-595 (2013).
    • (2013) Science , vol.339 , pp. 590-595
    • Ernst, A.1
  • 7
    • 84876877091 scopus 로고    scopus 로고
    • A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice
    • Escribano-Díaz, C. et al. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol. Cell 49, 872-883 (2013).
    • (2013) Mol. Cell , vol.49 , pp. 872-883
    • Escribano-Díaz, C.1
  • 8
    • 84876527317 scopus 로고    scopus 로고
    • RIF1 counteracts BRCA1-mediated end resection during DNA repair
    • Feng, L., Fong, K.W., Wang, J., Wang, W. & Chen, J. RIF1 counteracts BRCA1-mediated end resection during DNA repair. J. Biol. Chem. 288, 11135-11143 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 11135-11143
    • Feng, L.1    Fong, K.W.2    Wang, J.3    Wang, W.4    Chen, J.5
  • 9
    • 84879888213 scopus 로고    scopus 로고
    • 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark
    • Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499, 50-54 (2013).
    • (2013) Nature , vol.499 , pp. 50-54
    • Fradet-Turcotte, A.1
  • 10
    • 33845666681 scopus 로고    scopus 로고
    • Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair
    • Botuyan, M.V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361-1373 (2006).
    • (2006) Cell , vol.127 , pp. 1361-1373
    • Botuyan, M.V.1
  • 11
    • 70349441058 scopus 로고    scopus 로고
    • Ubiquitin-binding domains - From structures to functions
    • Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659-671 (2009).
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 659-671
    • Dikic, I.1    Wakatsuki, S.2    Walters, K.J.3
  • 12
    • 84950294519 scopus 로고    scopus 로고
    • A mechanism for the suppression of homologous recombination in G1 cells
    • Orthwein, A. et al. A mechanism for the suppression of homologous recombination in G1 cells. Nature 528, 422-426 (2015).
    • (2015) Nature , vol.528 , pp. 422-426
    • Orthwein, A.1
  • 13
    • 78649326442 scopus 로고    scopus 로고
    • The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination
    • O'Donnell, L. et al. The MMS22L-TONSL complex mediates recovery from replication stress and homologous recombination. Mol. Cell 40, 619-631 (2010).
    • (2010) Mol. Cell , vol.40 , pp. 619-631
    • O'Donnell, L.1
  • 14
    • 37349096996 scopus 로고    scopus 로고
    • Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair
    • Xie, A. et al. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol. Cell 28, 1045-1057 (2007).
    • (2007) Mol. Cell , vol.28 , pp. 1045-1057
    • Xie, A.1
  • 16
    • 84871550828 scopus 로고    scopus 로고
    • An inhibitor of nonhomologous end-joining abrogates doublestrand break repair and impedes cancer progression
    • Srivastava, M. et al. An inhibitor of nonhomologous end-joining abrogates doublestrand break repair and impedes cancer progression. Cell 151, 1474-1487 (2012).
    • (2012) Cell , vol.151 , pp. 1474-1487
    • Srivastava, M.1
  • 17
    • 84929147435 scopus 로고    scopus 로고
    • Increasing the efficiency of homology-directed repair for CRISPRCas9-induced precise gene editing in mammalian cells
    • Chu, V.T. et al. Increasing the efficiency of homology-directed repair for CRISPRCas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543-548 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 543-548
    • Chu, V.T.1
  • 18
    • 84929166074 scopus 로고    scopus 로고
    • Increasing the efficiency of precise genome editing with CRISPRCas9 by inhibition of nonhomologous end joining
    • Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPRCas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538-542 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 538-542
    • Maruyama, T.1
  • 19
    • 84950273964 scopus 로고    scopus 로고
    • Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing
    • Pinder, J., Salsman, J. & Dellaire, G. Nuclear domain 'knock-in' screen for the evaluation and identification of small molecule enhancers of CRISPR-based genome editing. Nucleic Acids Res. 43, 9379-9392 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. 9379-9392
    • Pinder, J.1    Salsman, J.2    Dellaire, G.3
  • 20
    • 85017512947 scopus 로고    scopus 로고
    • Marker-free coselection for CRISPR-driven genome editing in human cells
    • Agudelo, D. et al. Marker-free coselection for CRISPR-driven genome editing in human cells. Nat. Methods 14, 615-620 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 615-620
    • Agudelo, D.1
  • 21
    • 84928054835 scopus 로고    scopus 로고
    • Genome editing at the crossroads of delivery, specificity, and fidelity
    • Maggio, I. & Gonçalves, M.A. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol. 33, 280-291 (2015).
    • (2015) Trends Biotechnol. , vol.33 , pp. 280-291
    • Maggio, I.1    Gonçalves, M.A.2
  • 22
    • 84949814888 scopus 로고    scopus 로고
    • Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors
    • Wang, J. et al. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 33, 1256-1263 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1256-1263
    • Wang, J.1
  • 23
    • 84861984839 scopus 로고    scopus 로고
    • Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme
    • Wang, J. et al. Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. 22, 1316-1326 (2012).
    • (2012) Genome Res. , vol.22 , pp. 1316-1326
    • Wang, J.1
  • 24
    • 84969760939 scopus 로고    scopus 로고
    • Noncanonical views of homology-directed DNA repair
    • Verma, P. & Greenberg, R.A. Noncanonical views of homology-directed DNA repair. Genes Dev. 30, 1138-1154 (2016).
    • (2016) Genes Dev. , vol.30 , pp. 1138-1154
    • Verma, P.1    Greenberg, R.A.2
  • 25
    • 84994410009 scopus 로고    scopus 로고
    • Two distinct pathways support gene correction by singlestranded donors at DNA nicks
    • Davis, L. & Maizels, N. Two distinct pathways support gene correction by singlestranded donors at DNA nicks. Cell Rep. 17, 1872-1881 (2016).
    • (2016) Cell Rep. , vol.17 , pp. 1872-1881
    • Davis, L.1    Maizels, N.2
  • 26
    • 84960911917 scopus 로고    scopus 로고
    • Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA
    • Richardson, C.D., Ray, G.J., DeWitt, M.A., Curie, G.L. & Corn, J.E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339-344 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 339-344
    • Richardson, C.D.1    Ray, G.J.2    DeWitt, M.A.3    Curie, G.L.4    Corn, J.E.5
  • 27
    • 84945916597 scopus 로고    scopus 로고
    • Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway?
    • Sfeir, A. & Symington, L.S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701-714 (2015).
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 701-714
    • Sfeir, A.1    Symington, L.S.2
  • 28
    • 84869996067 scopus 로고    scopus 로고
    • RING finger nuclear factor RNF168 is important for defects in homologous recombination caused by loss of the breast cancer susceptibility factor BRCA1
    • Muñoz, M.C. et al. RING finger nuclear factor RNF168 is important for defects in homologous recombination caused by loss of the breast cancer susceptibility factor BRCA1. J. Biol. Chem. 287, 40618-40628 (2012).
    • (2012) J. Biol. Chem. , vol.287 , pp. 40618-40628
    • Muñoz, M.C.1
  • 29
    • 84936817070 scopus 로고    scopus 로고
    • 53BP1 promotes microhomology-mediated end-joining in G1-phase cells
    • Xiong, X. et al. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res. 43, 1659-1670 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. 1659-1670
    • Xiong, X.1
  • 30
    • 84868592402 scopus 로고    scopus 로고
    • I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks
    • Gunn, A. & Stark, J.M. I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol. Biol. 920, 379-391 (2012).
    • (2012) Methods Mol. Biol. , vol.920 , pp. 379-391
    • Gunn, A.1    Stark, J.M.2
  • 31
    • 46249131123 scopus 로고    scopus 로고
    • Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair
    • Bennardo, N., Cheng, A., Huang, N. & Stark, J.M. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 4, e1000110 (2008).
    • (2008) PLoS Genet. , vol.4 , pp. e1000110
    • Bennardo, N.1    Cheng, A.2    Huang, N.3    Stark, J.M.4
  • 33
    • 84949233942 scopus 로고    scopus 로고
    • High-resolution CRISPR screens reveal fitness genes and genotypespecific cancer liabilities
    • Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotypespecific cancer liabilities. Cell 163, 1515-1526 (2015).
    • (2015) Cell , vol.163 , pp. 1515-1526
    • Hart, T.1
  • 34
    • 84905262730 scopus 로고    scopus 로고
    • Improved vectors and genome-wide libraries for CRISPR screening
    • Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783-784 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 783-784
    • Sanjana, N.E.1    Shalem, O.2    Zhang, F.3
  • 35
    • 34250748507 scopus 로고    scopus 로고
    • Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries
    • Tonikian, R., Zhang, Y., Boone, C. & Sidhu, S.S. Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat. Protoc. 2, 1368-1386 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 1368-1386
    • Tonikian, R.1    Zhang, Y.2    Boone, C.3    Sidhu, S.S.4
  • 36
    • 46949095221 scopus 로고    scopus 로고
    • Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases
    • Perez, E.E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808-816 (2008).
    • (2008) Nat. Biotechnol. , vol.26 , pp. 808-816
    • Perez, E.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.