메뉴 건너뛰기




Volumn 73, Issue , 2018, Pages 1-14

Multi-modal feature fusion for geographic image annotation

Author keywords

Convolutional neural networks (CNNs); Deep learning; Geographic image annotation; Multi modal feature fusion

Indexed keywords

DEEP LEARNING; IMAGE ANALYSIS; NEURAL NETWORKS; PIXELS; VIDEO STREAMING;

EID: 85028468404     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2017.06.036     Document Type: Article
Times cited : (58)

References (61)
  • 1
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu, D., Weng, Q., A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28:5 (2007), 823–870.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 2
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D.G., Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60:2 (2004), 91–110.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 3
    • 0018925643 scopus 로고
    • Two-dimensional spectral analysis of cortical receptive field profiles
    • Daugman, J.G., Two-dimensional spectral analysis of cortical receptive field profiles. Vis. Res. 20:10 (1980), 847–856.
    • (1980) Vis. Res. , vol.20 , Issue.10 , pp. 847-856
    • Daugman, J.G.1
  • 6
    • 85029431829 scopus 로고    scopus 로고
    • arXiv preprint arXiv:1310.1531, Decaf: a deep convolutional activation feature for generic visual recognition
    • J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell, Decaf: a deep convolutional activation feature for generic visual recognition, arXiv preprint arXiv:1310.1531 (2013).
    • (2013)
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 8
    • 84870537938 scopus 로고    scopus 로고
    • Texture-based airport runway detection
    • Aytekin, H. Zongur, Texture-based airport runway detection. Geosci. Remote Sens. Lett. 10:3 (2013), 471–475.
    • (2013) Geosci. Remote Sens. Lett. , vol.10 , Issue.3 , pp. 471-475
    • Aytekin, H.1
  • 9
    • 84872918592 scopus 로고    scopus 로고
    • Geographic image retrieval using local invariant features
    • Yang, Y., Newsam, S., Geographic image retrieval using local invariant features. IEEE Trans. Geosci. Remote Sens. 51:2 (2013), 818–832.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 818-832
    • Yang, Y.1    Newsam, S.2
  • 10
    • 79957664686 scopus 로고    scopus 로고
    • Evaluation of local features for scene classification using vhr satellite images
    • Chen, L., Yang, W., Xu, K., Xu, T., Evaluation of local features for scene classification using vhr satellite images. Proc. Urban Remote Sensing Event, 2011, 385–388.
    • (2011) Proc. Urban Remote Sensing Event , pp. 385-388
    • Chen, L.1    Yang, W.2    Xu, K.3    Xu, T.4
  • 11
    • 33947167478 scopus 로고    scopus 로고
    • Face description with local binary patterns: application to face recognition
    • Ahonen, T., Hadid, A., Pietikainen, M., Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28:12 (2006), 2037–2041.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.12 , pp. 2037-2041
    • Ahonen, T.1    Hadid, A.2    Pietikainen, M.3
  • 12
    • 78650965134 scopus 로고    scopus 로고
    • Airport detection from large ikonos images using clustered sift keypoints and region information
    • Tao, C., Tan, Y., Cai, H., Tian, J., Airport detection from large ikonos images using clustered sift keypoints and region information. Geosci. Remote Sens. Lett. 8:1 (2011), 128–132.
    • (2011) Geosci. Remote Sens. Lett. , vol.8 , Issue.1 , pp. 128-132
    • Tao, C.1    Tan, Y.2    Cai, H.3    Tian, J.4
  • 13
    • 84862819703 scopus 로고    scopus 로고
    • Automatic target detection in high-resolution remote sensing images using a contour-based spatial model
    • Li, Y., Sun, X., Wang, H., Sun, H., Li, X., Automatic target detection in high-resolution remote sensing images using a contour-based spatial model. Geosci. Remote Sens. Lett. 9:5 (2012), 886–890.
    • (2012) Geosci. Remote Sens. Lett. , vol.9 , Issue.5 , pp. 886-890
    • Li, Y.1    Sun, X.2    Wang, H.3    Sun, H.4    Li, X.5
  • 14
    • 84901201294 scopus 로고    scopus 로고
    • Joint collaborative representation with multitask learning for hyperspectral image classification
    • Li, J., Zhang, H., Zhang, L., Huang, X., Zhang, L., Joint collaborative representation with multitask learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 52:9 (2014), 5923–5936.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.9 , pp. 5923-5936
    • Li, J.1    Zhang, H.2    Zhang, L.3    Huang, X.4    Zhang, L.5
  • 15
  • 16
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • Zhang, L., Zhang, L., Tao, D., Huang, X., On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 50:3 (2012), 879–893.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2    Tao, D.3    Huang, X.4
  • 17
    • 79953094686 scopus 로고    scopus 로고
    • Urban image classification with semisupervised multiscale cluster kernels
    • Tuia, D., Camps-Valls, G., Urban image classification with semisupervised multiscale cluster kernels. Sel. Top. Appl. Earth Obs. Remote Sens. 4:1 (2011), 65–74.
    • (2011) Sel. Top. Appl. Earth Obs. Remote Sens. , vol.4 , Issue.1 , pp. 65-74
    • Tuia, D.1    Camps-Valls, G.2
  • 21
    • 84861198977 scopus 로고    scopus 로고
    • Automatic annotation of multispectral satellite images using author–topic model
    • Luo, W., Li, H., Liu, G., Automatic annotation of multispectral satellite images using author–topic model. Geosci. Remote Sens. Lett. 9:4 (2012), 634–638.
    • (2012) Geosci. Remote Sens. Lett. , vol.9 , Issue.4 , pp. 634-638
    • Luo, W.1    Li, H.2    Liu, G.3
  • 22
    • 63149095448 scopus 로고    scopus 로고
    • Urban-area and building detection using sift keypoints and graph theory
    • Sirmacek, B., Ünsalan, C., Urban-area and building detection using sift keypoints and graph theory. IEEE Trans. Geosci. Remote Sens. 47:4 (2009), 1156–1167.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.4 , pp. 1156-1167
    • Sirmacek, B.1    Ünsalan, C.2
  • 24
    • 84907507036 scopus 로고    scopus 로고
    • Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation
    • Wang, L., Hao, S., Wang, Q., Wang, Y., Semi-supervised classification for hyperspectral imagery based on spatial-spectral label propagation. ISPRS J. Photogramm. Remote Sens. 97 (2014), 123–137.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.97 , pp. 123-137
    • Wang, L.1    Hao, S.2    Wang, Q.3    Wang, Y.4
  • 26
    • 84930423638 scopus 로고    scopus 로고
    • Spectral spatial classification of hyperspectral images using deep convolutional neural networks
    • Yue, J., Zhao, W., Mao, S., Liu, H., Spectral spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 6:6 (2015), 468–477.
    • (2015) Remote Sens. Lett. , vol.6 , Issue.6 , pp. 468-477
    • Yue, J.1    Zhao, W.2    Mao, S.3    Liu, H.4
  • 27
    • 84937137588 scopus 로고    scopus 로고
    • On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery
    • Zhao, W., Guo, Z., Yue, J., Zhang, X., Luo, L., On combining multiscale deep learning features for the classification of hyperspectral remote sensing imagery. Int. J. Remote Sens. 36:13 (2015), 3368–3379.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.13 , pp. 3368-3379
    • Zhao, W.1    Guo, Z.2    Yue, J.3    Zhang, X.4    Luo, L.5
  • 28
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep convolutional neural networks
    • Chen, X., Xiang, S., Liu, C.-L., Pan, C.-H., Vehicle detection in satellite images by hybrid deep convolutional neural networks. Geosci. Remote Sens. Lett. 11:10 (2014), 1797–1801.
    • (2014) Geosci. Remote Sens. Lett. , vol.11 , Issue.10 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 29
    • 77951204124 scopus 로고    scopus 로고
    • Comparison of vector stacking, multi-svms fuzzy output, and multi-svm+s voting methods for multiscale vhr urban mapping
    • Huang, X., Zhang, L., Comparison of vector stacking, multi-svms fuzzy output, and multi-svm+s voting methods for multiscale vhr urban mapping. Geosci. Remote Sens. Lett. 7:2 (2010), 261–265.
    • (2010) Geosci. Remote Sens. Lett. , vol.7 , Issue.2 , pp. 261-265
    • Huang, X.1    Zhang, L.2
  • 32
    • 85027917034 scopus 로고    scopus 로고
    • Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification
    • Li, J., Zhang, H., Zhang, L., Efficient superpixel-level multitask joint sparse representation for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 53:10 (2015), 5338–5351.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.10 , pp. 5338-5351
    • Li, J.1    Zhang, H.2    Zhang, L.3
  • 33
    • 84870903062 scopus 로고    scopus 로고
    • Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint
    • Zheng, X., Sun, X., Fu, K., Wang, H., Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint. Geosci. Remote Sens. Lett. 10:4 (2013), 652–656.
    • (2013) Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 652-656
    • Zheng, X.1    Sun, X.2    Fu, K.3    Wang, H.4
  • 34
    • 85029451562 scopus 로고    scopus 로고
    • arXiv preprint arXiv:1603.07120, Deep multimodal feature analysis for action recognition in rgb+d videos
    • A. Shahroudy, T.-T. Ng, Y. Gong, G. Wang, Deep multimodal feature analysis for action recognition in rgb+d videos, arXiv preprint arXiv:1603.07120 (2016).
    • (2016)
    • Shahroudy, A.1    Ng, T.-T.2    Gong, Y.3    Wang, G.4
  • 36
    • 84969750897 scopus 로고    scopus 로고
    • On deep multi-view representation learning.
    • Wang, W., Arora, R., Livescu, K., Bilmes, J.A., On deep multi-view representation learning. ICML, 2015, 1083–1092.
    • (2015) ICML , pp. 1083-1092
    • Wang, W.1    Arora, R.2    Livescu, K.3    Bilmes, J.A.4
  • 38
    • 85029415517 scopus 로고    scopus 로고
    • I. Markus Gerke, Use of the stair vision library within the isprs 2d semantic labeling benchmark (vaihingen).
    • I. Markus Gerke, Use of the stair vision library within the isprs 2d semantic labeling benchmark (vaihingen).
  • 39
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Cheriyadat, A.M., Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52:1 (2014), 439–451.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.1 , pp. 439-451
    • Cheriyadat, A.M.1
  • 42
    • 85029455886 scopus 로고    scopus 로고
    • arXiv preprint arXiv:1508.00092, Land use classification in remote sensing images by convolutional neural networks
    • M. Castelluccio, G. Poggi, C. Sansone, L. Verdoliva, Land use classification in remote sensing images by convolutional neural networks, arXiv preprint arXiv:1508.00092 (2015).
    • (2015)
    • Castelluccio, M.1    Poggi, G.2    Sansone, C.3    Verdoliva, L.4
  • 43
    • 84949921276 scopus 로고    scopus 로고
    • Deep learning earth observation classification using imagenet pretrained networks
    • Marmanis, D., Datcu, M., Esch, T., Stilla, U., Deep learning earth observation classification using imagenet pretrained networks. IEEE Geosci. Remote Sens. Lett. 13:1 (2016), 105–109.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.1 , pp. 105-109
    • Marmanis, D.1    Datcu, M.2    Esch, T.3    Stilla, U.4
  • 45
    • 85029454762 scopus 로고    scopus 로고
    • arXiv preprint arXiv:1606.02585, Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery
    • J. Sherrah, Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery, arXiv preprint arXiv:1606.02585 (2016).
    • (2016)
    • Sherrah, J.1
  • 48
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • Ojala, T., Pietikainen, M., Harwood, D., A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29:1 (1996), 51–59.
    • (1996) Pattern Recognit. , vol.29 , Issue.1 , pp. 51-59
    • Ojala, T.1    Pietikainen, M.2    Harwood, D.3
  • 50
    • 84887397359 scopus 로고    scopus 로고
    • Principal component analysis
    • Jolliffe, I.T., Principal component analysis. 2005.
    • (2005)
    • Jolliffe, I.T.1
  • 53
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • Hinton, G., A practical guide to training restricted boltzmann machines. Neural Networks: Tricks of the Trade, 2012, 599–619.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.1
  • 54
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio, Y., Learning deep architectures for AI. Found. Trends Mach. Learn. 2:1 (2009), 1–127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 55
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.-W., A fast learning algorithm for deep belief nets. Neural Comput. 18:7 (2006), 1527–1554.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 56
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K., Zhang, X., Ren, S., Sun, J., Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37:9 (2015), 1904–1916.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.37 , Issue.9 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 57
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon, F., Individual comparisons by ranking methods. Biom. Bull. 1:6 (1945), 80–83.
    • (1945) Biom. Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 58
    • 85029427060 scopus 로고    scopus 로고
    • ( http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html).
  • 59
    • 85029453257 scopus 로고    scopus 로고
    • ( http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/papers/Description_UCalgary.pdf).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.