-
1
-
-
84866688216
-
Measuring the objectness of image windows
-
1, 2, 6
-
B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34 (11): 2189-2202, 2012. 1, 2, 6
-
(2012)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.34
, Issue.11
, pp. 2189-2202
-
-
Alexe, B.1
Deselaers, T.2
Ferrari, V.3
-
2
-
-
84911417279
-
Multiscale combinatorial grouping
-
2, 3, 6, 8
-
P. Arbeláez, J. Pont-Tuset, J. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014. 2, 3, 6, 8
-
(2014)
CVPR
-
-
Arbeláez, P.1
Pont-Tuset, J.2
Barron, J.3
Marques, F.4
Malik, J.5
-
5
-
-
84911456915
-
Bing: Binarized normed gradients for objectness estimation at 300fps
-
6
-
M. Cheng, Z. Zhang, W. Lin, and P. Torr. Bing: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014. 6
-
(2014)
CVPR
-
-
Cheng, M.1
Zhang, Z.2
Lin, W.3
Torr, P.4
-
6
-
-
78149308041
-
Category independent object proposals
-
2. Springer
-
I. Endres and D. Hoiem. Category independent object proposals. In Computer Vision-ECCV 2010, pages 575-588. Springer, 2010. 2
-
(2010)
Computer Vision-ECCV 2010
, pp. 575-588
-
-
Endres, I.1
Hoiem, D.2
-
8
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
1, 4
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International journal of computer vision, 88 (2): 303-338, 2010. 1, 4
-
(2010)
International Journal of Computer Vision
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
9
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
1
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 32 (9), 2010. 1
-
(2010)
TPAMI
, vol.32
, Issue.9
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
10
-
-
85029359197
-
Fast R-CNN
-
1, 2, 3, 8
-
R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2, 3, 8
-
(2015)
ICCV
-
-
Girshick, R.1
-
11
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
1, 2
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 2
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
13
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
1, 2, 3
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 1, 2, 3
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
84955248479
-
-
arXiv preprint arXiv 1502 05082. 1, 2, 8
-
J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What makes for effective detection proposals? arXiv preprint arXiv: 1502. 05082, 2015. 1, 2, 8
-
(2015)
What Makes for Effective Detection Proposals?
-
-
Hosang, J.1
Benenson, R.2
Dollár, P.3
Schiele, B.4
-
15
-
-
85081111493
-
How good are detection proposals, really?
-
2
-
J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, really? In BMVC, 2014. 2
-
(2014)
BMVC
-
-
Hosang, J.1
Benenson, R.2
Schiele, B.3
-
16
-
-
84897482038
-
Connecting missing links: Object discovery from sparse observations using 5 million product images
-
8
-
H. Kang, M. Hebert, A. A. Efros, and T. Kanade. Connecting missing links: Object discovery from sparse observations using 5 million product images. In ECCV. 2012. 8
-
(2012)
ECCV
-
-
Kang, H.1
Hebert, M.2
Efros, A.A.3
Kanade, T.4
-
17
-
-
84946817713
-
Geodesic object proposals
-
2, 8
-
P. Krähenbühl and V. Koltun. Geodesic object proposals. In ECCV, 2014. 2, 8
-
(2014)
ECCV
-
-
Krähenbühl, P.1
Koltun, V.2
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
1, 2, 3, 7
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 2, 3, 7
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
1
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1 (4): 541-551, 1989. 1
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
20
-
-
84937834115
-
Microsoft coco: Common objects in context
-
1, 2, 3, 4
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, 2014. 1, 2, 3, 4
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollr, P.7
Zitnick, C.L.8
-
21
-
-
84898781017
-
Prime object proposals with randomized prim's algorithm
-
6
-
S. Manen, M. Guillaumin, and L. Van Gool. Prime object proposals with randomized prim's algorithm. In ICCV, 2013. 6
-
(2013)
ICCV
-
-
Manen, S.1
Guillaumin, M.2
Van Gool, L.3
-
22
-
-
84965114050
-
Learning to segment object candidates
-
To appear. 2, 8
-
P. O. Pinheiro, R. Collobert, and P. Dollár. Learning to segment object candidates. In NIPS, 2015 (To appear). 2, 8
-
(2015)
NIPS
-
-
Pinheiro, P.O.1
Collobert, R.2
Dollár, P.3
-
23
-
-
84856655925
-
Learning a category independent object detection cascade
-
6
-
E. Rahtu, K. Juho, and B. Matthew. Learning a category independent object detection cascade. In ICCV, 2011. 6
-
(2011)
ICCV
-
-
Rahtu, E.1
Juho, K.2
Matthew, B.3
-
24
-
-
84911429815
-
Generating object segmentation proposals using global and local search
-
6
-
R. E. Rantalankila P., Kannala J. Generating object segmentation proposals using global and local search. In CVPR, 2014. 6
-
(2014)
CVPR
-
-
Rantalankila, P.R.E.1
Kannala, J.2
-
25
-
-
84960980241
-
Faster RCNN: Towards real-time object detection with region proposal networks
-
To appear. 2
-
S. Ren, K. He, R. B. Girshick, and J. Sun. Faster RCNN: towards real-time object detection with region proposal networks. In NIPS, 2015 (To appear). 2
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.B.3
Sun, J.4
-
26
-
-
33845596932
-
Using multiple segmentations to discover objects and their extent in image collections
-
1
-
B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006. 1
-
(2006)
CVPR
-
-
Russell, B.C.1
Freeman, W.T.2
Efros, A.A.3
Sivic, J.4
Zisserman, A.5
-
28
-
-
84962336509
-
-
arXiv preprint arXiv 1412 1441. 2
-
C. Szegedy, S. Reed, D. Erhan, and D. Anguelov. Scalable, high-quality object detection. arXiv preprint arXiv: 1412. 1441, 2014. 2
-
(2014)
Scalable, High-quality Object Detection
-
-
Szegedy, C.1
Reed, S.2
Erhan, D.3
Anguelov, D.4
-
29
-
-
84881160857
-
Selective search for object recognition
-
2, 3, 6, 8
-
J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W. Smeulders. Selective search for object recognition. IJCV, 104 (2), 2013. 2, 3, 6, 8
-
(2013)
IJCV
, vol.104
, Issue.2
-
-
Uijlings, J.R.1
Van De Sande, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
30
-
-
84952018709
-
Edge boxes: Locating object proposals from edges
-
1, 2, 3, 4, 6, 7, 8
-
C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014. 1, 2, 3, 4, 6, 7, 8
-
(2014)
ECCV
-
-
Zitnick, C.L.1
Dollár, P.2
|