메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2479-2487

DeepBox: Learning objectness with convolutional networks

Author keywords

[No Author keywords available]

Indexed keywords

CONVOLUTION; NEURAL NETWORKS; SEMANTICS;

EID: 84973861966     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.285     Document Type: Conference Paper
Times cited : (178)

References (30)
  • 5
    • 84911456915 scopus 로고    scopus 로고
    • Bing: Binarized normed gradients for objectness estimation at 300fps
    • 6
    • M. Cheng, Z. Zhang, W. Lin, and P. Torr. Bing: Binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014. 6
    • (2014) CVPR
    • Cheng, M.1    Zhang, Z.2    Lin, W.3    Torr, P.4
  • 6
    • 78149308041 scopus 로고    scopus 로고
    • Category independent object proposals
    • 2. Springer
    • I. Endres and D. Hoiem. Category independent object proposals. In Computer Vision-ECCV 2010, pages 575-588. Springer, 2010. 2
    • (2010) Computer Vision-ECCV 2010 , pp. 575-588
    • Endres, I.1    Hoiem, D.2
  • 7
    • 84911443425 scopus 로고    scopus 로고
    • Scalable object detection using deep neural networks
    • 2
    • D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep neural networks. In CVPR, 2014. 2
    • (2014) CVPR
    • Erhan, D.1    Szegedy, C.2    Toshev, A.3    Anguelov, D.4
  • 9
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • 1
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. TPAMI, 32 (9), 2010. 1
    • (2010) TPAMI , vol.32 , Issue.9
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 10
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • 1, 2, 3, 8
    • R. Girshick. Fast R-CNN. In ICCV, 2015. 1, 2, 3, 8
    • (2015) ICCV
    • Girshick, R.1
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1, 2
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1, 2
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • 1, 2, 3
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 1, 2, 3
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 85081111493 scopus 로고    scopus 로고
    • How good are detection proposals, really?
    • 2
    • J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, really? In BMVC, 2014. 2
    • (2014) BMVC
    • Hosang, J.1    Benenson, R.2    Schiele, B.3
  • 16
    • 84897482038 scopus 로고    scopus 로고
    • Connecting missing links: Object discovery from sparse observations using 5 million product images
    • 8
    • H. Kang, M. Hebert, A. A. Efros, and T. Kanade. Connecting missing links: Object discovery from sparse observations using 5 million product images. In ECCV. 2012. 8
    • (2012) ECCV
    • Kang, H.1    Hebert, M.2    Efros, A.A.3    Kanade, T.4
  • 17
    • 84946817713 scopus 로고    scopus 로고
    • Geodesic object proposals
    • 2, 8
    • P. Krähenbühl and V. Koltun. Geodesic object proposals. In ECCV, 2014. 2, 8
    • (2014) ECCV
    • Krähenbühl, P.1    Koltun, V.2
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 2, 3, 7
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012. 1, 2, 3, 7
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 21
    • 84898781017 scopus 로고    scopus 로고
    • Prime object proposals with randomized prim's algorithm
    • 6
    • S. Manen, M. Guillaumin, and L. Van Gool. Prime object proposals with randomized prim's algorithm. In ICCV, 2013. 6
    • (2013) ICCV
    • Manen, S.1    Guillaumin, M.2    Van Gool, L.3
  • 22
    • 84965114050 scopus 로고    scopus 로고
    • Learning to segment object candidates
    • To appear. 2, 8
    • P. O. Pinheiro, R. Collobert, and P. Dollár. Learning to segment object candidates. In NIPS, 2015 (To appear). 2, 8
    • (2015) NIPS
    • Pinheiro, P.O.1    Collobert, R.2    Dollár, P.3
  • 23
    • 84856655925 scopus 로고    scopus 로고
    • Learning a category independent object detection cascade
    • 6
    • E. Rahtu, K. Juho, and B. Matthew. Learning a category independent object detection cascade. In ICCV, 2011. 6
    • (2011) ICCV
    • Rahtu, E.1    Juho, K.2    Matthew, B.3
  • 24
    • 84911429815 scopus 로고    scopus 로고
    • Generating object segmentation proposals using global and local search
    • 6
    • R. E. Rantalankila P., Kannala J. Generating object segmentation proposals using global and local search. In CVPR, 2014. 6
    • (2014) CVPR
    • Rantalankila, P.R.E.1    Kannala, J.2
  • 25
    • 84960980241 scopus 로고    scopus 로고
    • Faster RCNN: Towards real-time object detection with region proposal networks
    • To appear. 2
    • S. Ren, K. He, R. B. Girshick, and J. Sun. Faster RCNN: towards real-time object detection with region proposal networks. In NIPS, 2015 (To appear). 2
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.B.3    Sun, J.4
  • 26
    • 33845596932 scopus 로고    scopus 로고
    • Using multiple segmentations to discover objects and their extent in image collections
    • 1
    • B. C. Russell, W. T. Freeman, A. A. Efros, J. Sivic, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In CVPR, 2006. 1
    • (2006) CVPR
    • Russell, B.C.1    Freeman, W.T.2    Efros, A.A.3    Sivic, J.4    Zisserman, A.5
  • 30
    • 84952018709 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • 1, 2, 3, 4, 6, 7, 8
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014. 1, 2, 3, 4, 6, 7, 8
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.