메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 4703-4711

SegDeepM: Exploiting segmentation and context in deep neural networks for object detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE SEGMENTATION; MARKOV PROCESSES; NEURAL NETWORKS; OBJECT RECOGNITION; PATTERN RECOGNITION;

EID: 84959233955     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7299102     Document Type: Conference Paper
Times cited : (136)

References (26)
  • 1
    • 80052912306 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010.
    • (2010) ECCV
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 2
    • 84867872703 scopus 로고    scopus 로고
    • Semantic segmentation with second-order pooling
    • Springer
    • J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, pages 430-443. Springer, 2012.
    • (2012) ECCV , pp. 430-443
    • Carreira, J.1    Caseiro, R.2    Batista, J.3    Sminchisescu, C.4
  • 3
    • 77956008665 scopus 로고    scopus 로고
    • Constrained parametric min-cuts for automatic object segmentation
    • IEEE
    • J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, pages 3241-3248. IEEE, 2010.
    • (2010) CVPR , pp. 3241-3248
    • Carreira, J.1    Sminchisescu, C.2
  • 4
    • 84911421600 scopus 로고    scopus 로고
    • Detect what you can: Detecting and representing objects using holistic models and body parts
    • X. Chen, R. Mottaghi, X. Liu, N.-G. Cho, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In CVPR, 2014.
    • (2014) CVPR
    • Chen, X.1    Mottaghi, R.2    Liu, X.3    Cho, N.-G.4    Fidler, S.5    Urtasun, R.6    Yuille, A.7
  • 5
    • 84866636076 scopus 로고    scopus 로고
    • Learning to localize detected objects
    • Q. Dai and D. Hoiem. Learning to localize detected objects. In CVPR, 2012.
    • (2012) CVPR
    • Dai, Q.1    Hoiem, D.2
  • 6
    • 84906493976 scopus 로고    scopus 로고
    • Towards unified object detection and semantic segmentation
    • Springer
    • J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified object detection and semantic segmentation. In ECCV, pages 299-314. Springer, 2014.
    • (2014) ECCV , pp. 299-314
    • Dong, J.1    Chen, Q.2    Yan, S.3    Yuille, A.4
  • 7
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained partbased models
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. TPAMI, 32(9):1627-1645, 2010.
    • (2010) TPAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 12
    • 84887374674 scopus 로고    scopus 로고
    • Diagnosing error in object detectors
    • D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in object detectors. In ECCV, 2014.
    • (2014) ECCV
    • Hoiem, D.1    Chodpathumwan, Y.2    Dai, Q.3
  • 14
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 17
    • 84856631928 scopus 로고    scopus 로고
    • Object detection and segmentation from joint embedding of parts and pixels
    • M. Maire, S. X. Yu, and P. Perona. Object detection and segmentation from joint embedding of parts and pixels. In ICCV, 2011.
    • (2011) ICCV
    • Maire, M.1    Yu, S.X.2    Perona, P.3
  • 18
    • 84937836538 scopus 로고    scopus 로고
    • Stereopsis via deep learning
    • R. Memisevic and C. Conrad. Stereopsis via deep learning. In NIPS, 2011.
    • (2011) NIPS
    • Memisevic, R.1    Conrad, C.2
  • 23
    • 84856655938 scopus 로고    scopus 로고
    • Segmentation as selective search for object recognition
    • IEEE
    • K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W. Smeulders. Segmentation as selective search for object recognition. In ICCV, pages 1879-1886. IEEE, 2011.
    • (2011) ICCV , pp. 1879-1886
    • Sande De Van, K.E.1    Uijlings, J.R.2    Gevers, T.3    Smeulders, A.W.4
  • 24
    • 84898830536 scopus 로고    scopus 로고
    • DeepFlow: Large displacement optical flow with deep matching
    • P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: Large displacement optical flow with deep matching. In ICCV, 2013.
    • (2013) ICCV
    • Weinzaepfel, P.1    Revaud, J.2    Harchaoui, Z.3    Schmid, C.4
  • 26
    • 84866687133 scopus 로고    scopus 로고
    • Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
    • J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012.
    • (2012) CVPR
    • Yao, J.1    Fidler, S.2    Urtasun, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.