-
1
-
-
80052912306
-
Detecting people using mutually consistent poselet activations
-
L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010.
-
(2010)
ECCV
-
-
Bourdev, L.1
Maji, S.2
Brox, T.3
Malik, J.4
-
2
-
-
84867872703
-
Semantic segmentation with second-order pooling
-
Springer
-
J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with second-order pooling. In ECCV, pages 430-443. Springer, 2012.
-
(2012)
ECCV
, pp. 430-443
-
-
Carreira, J.1
Caseiro, R.2
Batista, J.3
Sminchisescu, C.4
-
3
-
-
77956008665
-
Constrained parametric min-cuts for automatic object segmentation
-
IEEE
-
J. Carreira and C. Sminchisescu. Constrained parametric min-cuts for automatic object segmentation. In CVPR, pages 3241-3248. IEEE, 2010.
-
(2010)
CVPR
, pp. 3241-3248
-
-
Carreira, J.1
Sminchisescu, C.2
-
4
-
-
84911421600
-
Detect what you can: Detecting and representing objects using holistic models and body parts
-
X. Chen, R. Mottaghi, X. Liu, N.-G. Cho, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In CVPR, 2014.
-
(2014)
CVPR
-
-
Chen, X.1
Mottaghi, R.2
Liu, X.3
Cho, N.-G.4
Fidler, S.5
Urtasun, R.6
Yuille, A.7
-
5
-
-
84866636076
-
Learning to localize detected objects
-
Q. Dai and D. Hoiem. Learning to localize detected objects. In CVPR, 2012.
-
(2012)
CVPR
-
-
Dai, Q.1
Hoiem, D.2
-
6
-
-
84906493976
-
Towards unified object detection and semantic segmentation
-
Springer
-
J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified object detection and semantic segmentation. In ECCV, pages 299-314. Springer, 2014.
-
(2014)
ECCV
, pp. 299-314
-
-
Dong, J.1
Chen, Q.2
Yan, S.3
Yuille, A.4
-
7
-
-
77955422240
-
Object detection with discriminatively trained partbased models
-
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. TPAMI, 32(9):1627-1645, 2010.
-
(2010)
TPAMI
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.3
Ramanan, D.4
-
14
-
-
85162351107
-
Efficient inference in fully connected crfs with Gaussian edge potentials
-
P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
78149308416
-
What, where and how many? Combining object detectors and crfs
-
L. Ladicky, P. Sturgess, K. Alahari, C. Russell, and P. H. Torr. What, where and how many? combining object detectors and crfs. In ECCV, 2010.
-
(2010)
ECCV
-
-
Ladicky, L.1
Sturgess, P.2
Alahari, K.3
Russell, C.4
Torr, P.H.5
-
17
-
-
84856631928
-
Object detection and segmentation from joint embedding of parts and pixels
-
M. Maire, S. X. Yu, and P. Perona. Object detection and segmentation from joint embedding of parts and pixels. In ICCV, 2011.
-
(2011)
ICCV
-
-
Maire, M.1
Yu, S.X.2
Perona, P.3
-
18
-
-
84937836538
-
Stereopsis via deep learning
-
R. Memisevic and C. Conrad. Stereopsis via deep learning. In NIPS, 2011.
-
(2011)
NIPS
-
-
Memisevic, R.1
Conrad, C.2
-
19
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. CVPR, 2014.
-
(2014)
CVPR
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
Yuille, A.8
-
22
-
-
84917742909
-
-
arXiv preprint arXiv:1409. 4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. ArXiv preprint arXiv:1409. 4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
23
-
-
84856655938
-
Segmentation as selective search for object recognition
-
IEEE
-
K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W. Smeulders. Segmentation as selective search for object recognition. In ICCV, pages 1879-1886. IEEE, 2011.
-
(2011)
ICCV
, pp. 1879-1886
-
-
Sande De Van, K.E.1
Uijlings, J.R.2
Gevers, T.3
Smeulders, A.W.4
-
26
-
-
84866687133
-
Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation
-
J. Yao, S. Fidler, and R. Urtasun. Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In CVPR, 2012.
-
(2012)
CVPR
-
-
Yao, J.1
Fidler, S.2
Urtasun, R.3
|