메뉴 건너뛰기




Volumn 200, Issue 2, 2018, Pages

Erratum: "The novel transcriptional regulator LmbU promotes lincomycin biosynthesis through regulating expression of its target genes in Streptomyces lincolnensis [200, 2, e00447-17, (2018) (1-1)] doi: 10.1128/JB.00447-17;The novel transcriptional regulator LmbU promotes lincomycin biosynthesis through regulating expression of its target genes in Streptomyces lincolnensis

Author keywords

Cluster situated regulator; Lincomycin; LmbU; LmbU homologues; Regulatory protein; Streptomyces

Indexed keywords

BACTERIAL DNA; BACTERIAL PROTEIN; DNA BINDING PROTEIN; DNA FRAGMENT; LINCOMYCIN; LMBA PROTEIN; LMBC PROTEIN; LMBJ PROTEIN; LMBK PROTEIN; LMBU PROTEIN; LMBW PROTEIN; NEOMYCIN; REGULATOR PROTEIN; UNCLASSIFIED DRUG; TRANSCRIPTION FACTOR;

EID: 85039068446     PISSN: 00219193     EISSN: 10985530     Source Type: Journal    
DOI: 10.1128/JB.00777-17     Document Type: Erratum
Times cited : (47)

References (49)
  • 2
    • 0029084746 scopus 로고
    • Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11
    • Peschke U, Schmidt H, Zhang HZ, Piepersberg W. 1995. Molecular characterization of the lincomycin-production gene cluster of Streptomyces lincolnensis 78-11. Mol Microbiol 16:1137-1156. https://doi.org/10.1111/j.1365-2958.1995.tb02338.x
    • (1995) Mol Microbiol , vol.16 , pp. 1137-1156
    • Peschke, U.1    Schmidt, H.2    Zhang, H.Z.3    Piepersberg, W.4
  • 3
    • 57649195589 scopus 로고    scopus 로고
    • Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466
    • Koberská M, Kopecký J, Olsovská J, Jelínková M, Ulanova D, Man P, Flieger M, Janata J. 2008. Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466. Folia Microbiol (Praha) 53:395-401. https://doi.org/10.1007/s12223-008-0060-8
    • (2008) Folia Microbiol (Praha) , vol.53 , pp. 395-401
    • Koberská, M.1    Kopecký, J.2    Olsovská, J.3    Jelínková, M.4    Ulanova, D.5    Man, P.6    Flieger, M.7    Janata, J.8
  • 4
    • 0026667988 scopus 로고
    • Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11
    • Zhang HZ, Schmidt H, Piepersberg W. 1992. Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Mol Microbiol 6:2147-2157. https://doi.org/10 .1111/j.1365-2958.1992.tb01388.x
    • (1992) Mol Microbiol , vol.6 , pp. 2147-2157
    • Zhang, H.Z.1    Schmidt, H.2    Piepersberg, W.3
  • 5
    • 2542476714 scopus 로고    scopus 로고
    • Lincomycin, cultivation of producing strains and biosynthesis
    • Spízek J, Rezanka T. 2004. Lincomycin, cultivation of producing strains and biosynthesis. Appl Microbiol Biotechnol 63:510-519. https://doi .org/10.1007/s00253-003-1431-3
    • (2004) Appl Microbiol Biotechnol , vol.63 , pp. 510-519
    • Spízek, J.1    Rezanka, T.2
  • 6
    • 65549162526 scopus 로고    scopus 로고
    • Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog
    • Li W, Chou S, Khullar A, Gerratana B. 2009. Cloning and characterization of the biosynthetic gene cluster for tomaymycin, an SJG-136 monomeric analog. Appl Environ Microbiol 75:2958-2963. https://doi.org/10.1128/AEM.02325-08
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2958-2963
    • Li, W.1    Chou, S.2    Khullar, A.3    Gerratana, B.4
  • 8
    • 65549123941 scopus 로고    scopus 로고
    • Biosynthesis of sibiromycin, a potent antitumor antibiotic
    • Li W, Khullar A, Chou SC, Sacramo A, Gerratana B. 2009. Biosynthesis of sibiromycin, a potent antitumor antibiotic. Appl Environ Microbiol 75: 2869-2878. https://doi.org/10.1128/AEM.02326-08
    • (2009) Appl Environ Microbiol , vol.75 , pp. 2869-2878
    • Li, W.1    Khullar, A.2    Chou, S.C.3    Sacramo, A.4    Gerratana, B.5
  • 9
    • 79953058897 scopus 로고    scopus 로고
    • Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite
    • Höfer I, Crüsemann M, Radzom M, Geers B, Flachshaar D, Cai XF, Zeeck A, Piel J. 2011. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite. Chem Biol 18: 381-391
    • (2011) Chem Biol , vol.18 , pp. 381-391
    • Höfer, I.1    Crüsemann, M.2    Radzom, M.3    Geers, B.4    Flachshaar, D.5    Cai, X.F.6    Zeeck, A.7    Piel, J.8
  • 10
    • 0015245039 scopus 로고
    • Bioconversion of tyrosine into the propylhygric acid moiety of lincomycin
    • Witz DF, Hessler EJ, Miller TL. 1971. Bioconversion of tyrosine into the propylhygric acid moiety of lincomycin. Biochemistry 10:1128-1133. https://doi.org/10.1021/bi00783a005
    • (1971) Biochemistry , vol.10 , pp. 1128-1133
    • Witz, D.F.1    Hessler, E.J.2    Miller, T.L.3
  • 11
    • 0031594596 scopus 로고    scopus 로고
    • The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A
    • Neusser D, Schmidt H, Spizèk J, Novotnà J, Peschke U, Kaschabeck S, Tichy P, Piepersberg W. 1998. The genes lmbB1 and lmbB2 of Streptomyces lincolnensis encode enzymes involved in the conversion of L-tyrosine to propylproline during the biosynthesis of the antibiotic lincomycin A. Arch Microbiol 169:322-332. https://doi.org/10.1007/s002030050578
    • (1998) Arch Microbiol , vol.169 , pp. 322-332
    • Neusser, D.1    Schmidt, H.2    Spizèk, J.3    Novotnà, J.4    Peschke, U.5    Kaschabeck, S.6    Tichy, P.7    Piepersberg, W.8
  • 12
    • 4544261979 scopus 로고    scopus 로고
    • L-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis
    • Novotná J, Honzátko A, Bednár P, Kopecký J, Janata J, Spízek J. 2004. L-3,4-Dihydroxyphenyl alanine-extradiol cleavage is followed by intramolecular cyclization in lincomycin biosynthesis. Eur J Biochem 271: 3678-3683. https://doi.org/10.1111/j.1432-1033.2004.04308.x
    • (2004) Eur J Biochem , vol.271 , pp. 3678-3683
    • Novotná, J.1    Honzátko, A.2    Bednár, P.3    Kopecký, J.4    Janata, J.5    Spízek, J.6
  • 13
    • 84964330585 scopus 로고    scopus 로고
    • New concept of the biosynthesis of 4-alkyl-L-proline precursors of lincomycin, hormaomycin, and pyrrolobenzodiazepines: could a γ-glutamytransferase cleave the C-C bond
    • Jiraskova P, Gazak R, Kamenik Z, Steiningerova L, Najmanova L, Kadlcik S, Novotna J, Kuzma M, Janata J. 2016. New concept of the biosynthesis of 4-alkyl-L-proline precursors of lincomycin, hormaomycin, and pyrrolobenzodiazepines: could a γ-glutamytransferase cleave the C-C bond? Front Microbiol 7:276. https://doi.org/10.3389/fmicb.2016.00276
    • (2016) Front Microbiol , vol.7 , pp. 276
    • Jiraskova, P.1    Gazak, R.2    Kamenik, Z.3    Steiningerova, L.4    Najmanova, L.5    Kadlcik, S.6    Novotna, J.7    Kuzma, M.8    Janata, J.9
  • 14
    • 84942163364 scopus 로고    scopus 로고
    • Co-overexpression of lmbW and metK led to increased lincomycin A production and decreased byproduct lincomycin B content in an industrial strain of Streptomyces lincolnensis
    • Pang AP, Du L, Lin CY, Qiao J, Zhao GR. 2015. Co-overexpression of lmbW and metK led to increased lincomycin A production and decreased byproduct lincomycin B content in an industrial strain of Streptomyces lincolnensis. J Appl Microbiol 119:1064-1074. https://doi.org/10.1111/jam.12919
    • (2015) J Appl Microbiol , vol.119 , pp. 1064-1074
    • Pang, A.P.1    Du, L.2    Lin, C.Y.3    Qiao, J.4    Zhao, G.R.5
  • 15
    • 84868087330 scopus 로고    scopus 로고
    • Construction of the octose 8-phosphate intermediate in lincomycin A biosynthesis: characterization of the reactions catalyzed by LmbR and LmbN
    • Sasaki E, Lin CI, Lin KY, Liu HW. 2012. Construction of the octose 8-phosphate intermediate in lincomycin A biosynthesis: characterization of the reactions catalyzed by LmbR and LmbN. J Am Chem Soc 134: 17432-17435. https://doi.org/10.1021/ja308221z
    • (2012) J Am Chem Soc , vol.134 , pp. 17432-17435
    • Sasaki, E.1    Lin, C.I.2    Lin, K.Y.3    Liu, H.W.4
  • 16
    • 84893020223 scopus 로고    scopus 로고
    • In vitro characterization of LmbK and LmbO: identification of GDP-D-erythro-α-D-gluco-octose as a key intermediate in lincomycin A biosynthesis
    • Lin CI, Sasaki E, Zhong A, Liu HW. 2014. In vitro characterization of LmbK and LmbO: identification of GDP-D-erythro-α-D-gluco-octose as a key intermediate in lincomycin A biosynthesis. J Am Chem Soc 136:906-909. https://doi.org/10.1021/ja412194w
    • (2014) J Am Chem Soc , vol.136 , pp. 906-909
    • Lin, C.I.1    Sasaki, E.2    Zhong, A.3    Liu, H.W.4
  • 17
    • 84923087541 scopus 로고    scopus 로고
    • Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A
    • Zhao QF, Wang M, Xu DX, Zhang QL, Liu W. 2015. Metabolic coupling of two small-molecule thiols programs the biosynthesis of lincomycin A. Nature 518:115-119. https://doi.org/10.1038/nature14137
    • (2015) Nature , vol.518 , pp. 115-119
    • Zhao, Q.F.1    Wang, M.2    Xu, D.X.3    Zhang, Q.L.4    Liu, W.5
  • 18
    • 15944401749 scopus 로고    scopus 로고
    • A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development
    • Liu G, Tian YQ, Yang HH, Tan HR. 2005. A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol 55:1855-1866. https://doi.org/10.1111/j.1365-2958.2005.04512.x
    • (2005) Mol Microbiol , vol.55 , pp. 1855-1866
    • Liu, G.1    Tian, Y.Q.2    Yang, H.H.3    Tan, H.R.4
  • 19
    • 84911805738 scopus 로고    scopus 로고
    • Differential contributions of two SARP family regulatory genes to indigoidine biosynthesis in Streptomyces lavendulae FRI-5
    • Kurniawan YN, Kitani S, Maeda A, Nihira T. 2014. Differential contributions of two SARP family regulatory genes to indigoidine biosynthesis in Streptomyces lavendulae FRI-5. Appl Microbiol Biotechnol 98:9713-9721. https://doi.org/10.1007/s00253-014-5988-9
    • (2014) Appl Microbiol Biotechnol , vol.98 , pp. 9713-9721
    • Kurniawan, Y.N.1    Kitani, S.2    Maeda, A.3    Nihira, T.4
  • 20
    • 84887410024 scopus 로고    scopus 로고
    • JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis
    • Zhang YY, Pan GH, Zou ZZ, Fan KQ, Yang KQ, Tan HR. 2013. JadR*-mediated feed-forward regulation of cofactor supply in jadomycin biosynthesis. Mol Microbiol 90:884-897. https://doi.org/10.1111/mmi.12406
    • (2013) Mol Microbiol , vol.90 , pp. 884-897
    • Zhang, Y.Y.1    Pan, G.H.2    Zou, Z.Z.3    Fan, K.Q.4    Yang, K.Q.5    Tan, H.R.6
  • 22
    • 84885453307 scopus 로고    scopus 로고
    • Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of coenzyme A metabolism in Streptomyces avermitilis
    • Liu YP, Yan TT, Jiang LB, Wen Y, Song Y, Chen Z, Li JL. 2013. Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of coenzyme A metabolism in Streptomyces avermitilis. J Bacteriol 195:4365-4372. https://doi.org/10.1128/JB.00716-13
    • (2013) J Bacteriol , vol.195 , pp. 4365-4372
    • Liu, Y.P.1    Yan, T.T.2    Jiang, L.B.3    Wen, Y.4    Song, Y.5    Chen, Z.6    Li, J.L.7
  • 23
    • 84926500201 scopus 로고    scopus 로고
    • Regulation of coronafacoyl phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab pathogen Streptomyces scabies
    • Cheng ZL, Bown L, Tahlan K, Bignell DR. 2015. Regulation of coronafacoyl phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab pathogen Streptomyces scabies. PLoS One 10:e0122450. https://doi.org/10.1371/journal.pone.0122450
    • (2015) PLoS One , vol.10
    • Cheng, Z.L.1    Bown, L.2    Tahlan, K.3    Bignell, D.R.4
  • 24
    • 84955614985 scopus 로고    scopus 로고
    • Interspecies complementation of the LuxR family pathway-specific regulator involved in macrolide biosynthesis
    • Mo S, Yoon YJ. 2016. Interspecies complementation of the LuxR family pathway-specific regulator involved in macrolide biosynthesis. J Microbiol Biotechnol 26:66-71. https://doi.org/10.4014/jmb.1510.10085
    • (2016) J Microbiol Biotechnol , vol.26 , pp. 66-71
    • Mo, S.1    Yoon, Y.J.2
  • 26
    • 84874967070 scopus 로고    scopus 로고
    • The transcriptional regulator TamR from Streptomyces coelicolor controls a key step in central metabolism during oxidative stress
    • Huang H, Grove A. 2013. The transcriptional regulator TamR from Streptomyces coelicolor controls a key step in central metabolism during oxidative stress. Mol Microbiol 87:1151-1161. https://doi.org/10.1111/mmi.12156
    • (2013) Mol Microbiol , vol.87 , pp. 1151-1161
    • Huang, H.1    Grove, A.2
  • 27
    • 3242882269 scopus 로고    scopus 로고
    • Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus
    • Leonard TA, Butler PJ, Löwe J. 2004. Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 53:419-432. https://doi.org/10.1111/j.1365-2958.2004.04133.x
    • (2004) Mol Microbiol , vol.53 , pp. 419-432
    • Leonard, T.A.1    Butler, P.J.2    Löwe, J.3
  • 28
    • 84861206911 scopus 로고    scopus 로고
    • The transcription factor AmrZ utilizes multiple DNA binding modes to recognize activator and repressor sequences of Pseudomonas aeruginosa virulence genes
    • Pryor EE, Jr, Waligora EA, Xu B, Dellos-Nolan S, Wozniak DJ, Hollis T. 2012 The transcription factor AmrZ utilizes multiple DNA binding modes to recognize activator and repressor sequences of Pseudomonas aeruginosa virulence genes. PloS Pathog 8:e1002648. https://doi .org/10.1371/journal.ppat.1002648
    • (2012) PloS Pathog , vol.8
    • Pryor, E.E.1    Waligora, E.A.2    Xu, B.3    Dellos-Nolan, S.4    Wozniak, D.J.5    Hollis, T.6
  • 29
    • 77952909070 scopus 로고    scopus 로고
    • Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces
    • Martín JF, Liras P. 2010. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263-273. https://doi.org/10.1016/j.mib.2010.02.008
    • (2010) Curr Opin Microbiol , vol.13 , pp. 263-273
    • Martín, J.F.1    Liras, P.2
  • 30
    • 80052077061 scopus 로고    scopus 로고
    • The regulation of the secondary metabolism of Streptomyces: new links and experimental advances
    • van Wezel GP, McDowall KJ. 2011. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311-1333. https://doi.org/10.1039/c1np00003a
    • (2011) Nat Prod Rep , vol.28 , pp. 1311-1333
    • van Wezel, G.P.1    McDowall, K.J.2
  • 31
    • 84874850153 scopus 로고    scopus 로고
    • Molecular regulation of antibiotic biosynthesis in Streptomyces
    • Liu G, Chater KF, Chandra G, Niu GQ, Tan HR. 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77: 112-143. https://doi.org/10.1128/MMBR.00054-12
    • (2013) Microbiol Mol Biol Rev , vol.77 , pp. 112-143
    • Liu, G.1    Chater, K.F.2    Chandra, G.3    Niu, G.Q.4    Tan, H.R.5
  • 32
    • 58449090159 scopus 로고    scopus 로고
    • Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor
    • O'Rourke S, Wietzorrek A, Fowler K, Corre C, Challis GL, Chater KF. 2009. Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Mol Microbiol 71:763-778. https://doi.org/10 .1111/j.1365-2958.2008.06560.x
    • (2009) Mol Microbiol , vol.71 , pp. 763-778
    • O'Rourke, S.1    Wietzorrek, A.2    Fowler, K.3    Corre, C.4    Challis, G.L.5    Chater, K.F.6
  • 34
    • 84936972379 scopus 로고    scopus 로고
    • Increasing avermectin production in Streptomyces avermitilis by manipulating the expression of a novel TetR-family regulator and its target gene product
    • Liu WS, Zhang QL, Guo J, Chen Z, Li JL, Wen Y. 2015. Increasing avermectin production in Streptomyces avermitilis by manipulating the expression of a novel TetR-family regulator and its target gene product. Appl Environ Microbiol 81:5157-5173. https://doi.org/10.1128/AEM .00868-15
    • (2015) Appl Environ Microbiol , vol.81 , pp. 5157-5173
    • Liu, W.S.1    Zhang, Q.L.2    Guo, J.3    Chen, Z.4    Li, J.L.5    Wen, Y.6
  • 35
    • 84859736971 scopus 로고    scopus 로고
    • DNA recognition and transcriptional regulation by the WhiA sporulation factor
    • Kaiser BK, Stoddard BL. 2011. DNA recognition and transcriptional regulation by the WhiA sporulation factor. Sci Rep 1:156. https://doi.org/10 .1038/srep00156
    • (2011) Sci Rep , vol.1 , pp. 156
    • Kaiser, B.K.1    Stoddard, B.L.2
  • 36
    • 84900792202 scopus 로고    scopus 로고
    • The C-terminal domain of the transcriptional regulator BldD from Streptomyces coelicolor A3 (2) constitutes a novel fold of winged-helix domains
    • Kim JM, Won HS, Kang SO. 2014. The C-terminal domain of the transcriptional regulator BldD from Streptomyces coelicolor A3 (2) constitutes a novel fold of winged-helix domains. Proteins 82:1093-1098. https://doi.org/10.1002/prot.24481
    • (2014) Proteins , vol.82 , pp. 1093-1098
    • Kim, J.M.1    Won, H.S.2    Kang, S.O.3
  • 38
    • 84886702062 scopus 로고    scopus 로고
    • Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity
    • Yao MD, Ohtsuka J, Nagata K, Miyazono KI, Zhi YH, Ohnishi Y, Tanokura M. 2013. Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity. J Biol Chem 288:31019-31029. https://doi.org/10.1074/jbc.M113.473611
    • (2013) J Biol Chem , vol.288 , pp. 31019-31029
    • Yao, M.D.1    Ohtsuka, J.2    Nagata, K.3    Miyazono, K.I.4    Zhi, Y.H.5    Ohnishi, Y.6    Tanokura, M.7
  • 39
    • 25844514282 scopus 로고    scopus 로고
    • Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family
    • Hong MS, Fuangthong M, Helmann JD, Brennan RG. 2005. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell 20:131-141. https://doi.org/10.1016/j.molcel .2005.09.013
    • (2005) Mol Cell , vol.20 , pp. 131-141
    • Hong, M.S.1    Fuangthong, M.2    Helmann, J.D.3    Brennan, R.G.4
  • 40
    • 0037047395 scopus 로고    scopus 로고
    • Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa
    • Lim D, Poole K, Strynadka NC. 2002. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem 277:29253-29259. https://doi.org/10.1074/jbc .M111381200
    • (2002) J Biol Chem , vol.277 , pp. 29253-29259
    • Lim, D.1    Poole, K.2    Strynadka, N.C.3
  • 41
    • 84876064813 scopus 로고    scopus 로고
    • Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors
    • Davis JR, Brown BL, Page R, Sello JK. 2013. Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors. Nucleic Acids Res 41:3888-3900. https://doi.org/10 .1093/nar/gkt009
    • (2013) Nucleic Acids Res , vol.41 , pp. 3888-3900
    • Davis, J.R.1    Brown, B.L.2    Page, R.3    Sello, J.K.4
  • 42
    • 0023275412 scopus 로고
    • Transformation of Streptomyces avermitilis by plasmid DNA
    • MacNeil DJ, Klapko LM. 1987. Transformation of Streptomyces avermitilis by plasmid DNA. J Ind Microbiol 2:209-218. https://doi.org/10.1007/BF01569542
    • (1987) J Ind Microbiol , vol.2 , pp. 209-218
    • MacNeil, D.J.1    Klapko, L.M.2
  • 46
    • 0026645203 scopus 로고
    • Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp
    • Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43-49. https://doi.org/10.1016/0378-1119(92)90627-2
    • (1992) Gene , vol.116 , pp. 43-49
    • Bierman, M.1    Logan, R.2    O'Brien, K.3    Seno, E.T.4    Rao, R.N.5    Schoner, B.E.6
  • 47
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. https://doi.org/10.1016/0003-2697(76)90527-3
    • (1976) Anal Biochem , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 48
    • 84952701122 scopus 로고    scopus 로고
    • Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes
    • Liao CH, Yao L, Xu Y, Liu WB, Zhou Y, Ye BC. 2015. Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes. Proc Natl Acad Sci U S A 112: 15630-15635. https://doi.org/10.1073/pnas.1508465112
    • (2015) Proc Natl Acad Sci U S A , vol.112 , pp. 15630-15635
    • Liao, C.H.1    Yao, L.2    Xu, Y.3    Liu, W.B.4    Zhou, Y.5    Ye, B.C.6
  • 49
    • 85039775036 scopus 로고
    • China Medico-Pharmaceutical Science & Technology Publishing House, Beijing, China
    • Pharmacopoeia Commission of the Ministry of Health of the People's Republic of China. 1990. Pharmacopoeia of the People's Republic of China, 1990 ed, appendices 113-116. China Medico-Pharmaceutical Science & Technology Publishing House, Beijing, China
    • (1990) Pharmacopoeia of the People's Republic of China, 1990 ed, appendices 113-116


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.