메뉴 건너뛰기




Volumn 1716, Issue , 2018, Pages 389-408

Optimization of multi-omic genome-scale models: Methodologies, hands-on tutorial, and perspectives

Author keywords

Data integration; Flux balance analysis; Machine learning; Metabolic models; Multi objective optimization; Multi omics

Indexed keywords

BACTERIAL GROWTH; BACTERIAL METABOLISM; CODON USAGE; COMMUNITY STRUCTURE; COMPARATIVE STUDY; DATA ANALYSIS SOFTWARE; ENZYME METABOLISM; ESCHERICHIA COLI; EVOLUTIONARY ALGORITHM; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENE FUNCTION; GENE INACTIVATION; GENE MAPPING; GENETIC ALGORITHM; GENETIC ENGINEERING; GENETIC MANIPULATION; GENETIC TRANSCRIPTION; GENOME ANALYSIS; GENOMICS; MACHINE LEARNING; METABOLIC CAPACITY; METABOLIC ENGINEERING; MICROBIAL BIOMASS; MICROBIAL COMMUNITY; MODEL; NONHUMAN; PHENOTYPE; PREDICTION; PRINCIPAL COMPONENT ANALYSIS; PROCESS OPTIMIZATION; PROTEIN STRUCTURE; RNA SEQUENCE; SIMULATION; SYNECHOCOCCUS ELONGATUS; SYNECHOCYSTIS SP. PCC 6803; SYSTEM ANALYSIS; SYSTEMS BIOLOGY; TRANSCRIPTOMICS; BACTERIAL GENOME; BACTERIUM; BIOLOGICAL MODEL; GENE REGULATORY NETWORK; GENETICS; METABOLISM; PROCEDURES;

EID: 85037701016     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-7528-0_18     Document Type: Chapter
Times cited : (18)

References (68)
  • 1
    • 84946615442 scopus 로고    scopus 로고
    • Calibration and analysis of genome-based models for microbial ecology
    • Louca S, Doebeli M (2015) Calibration and analysis of genome-based models for microbial ecology. Elife 4:e08208.
    • (2015) Elife
    • Louca, S.1    Doebeli, M.2
  • 2
    • 85029436496 scopus 로고    scopus 로고
    • Genome scale metabolic modeling of cancer
    • Nilsson A, Nielsen J (2016) Genome scale metabolic modeling of cancer. Metab Eng 43(B):103–112.
    • (2016) Metab Eng , vol.43 , Issue.B , pp. 103-112
    • Nilsson, A.1    Nielsen, J.2
  • 4
    • 84994442721 scopus 로고    scopus 로고
    • Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling
    • Zieliński ŁP, Smith AC, Smith AG, Robinson AJ (2016) Metabolic flexibility of mitochondrial respiratory chain disorders predicted by computer modelling. Mitochondrion 31:45–55.
    • (2016) Mitochondrion , vol.31 , pp. 45-55
    • Zieliński, Ł.P.1    Smith, A.C.2    Smith, A.G.3    Robinson, A.J.4
  • 6
    • 84878723718 scopus 로고    scopus 로고
    • Methods in Bioengineering: Systems analysis of biological networks
    • Artech House, Boston
    • Jayaraman A, Hahn J (2009) Methods in Bioengineering: systems analysis of biological networks. Artech House methods in bioengineering series. Artech House, Boston. https://books.google.co.uk/books?id=Haod3KR-tR8C.
    • (2009) Artech House Methods in Bioengineering Series
    • Jayaraman, A.1    Hahn, J.2
  • 7
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107–120.
    • (2014) Nat Rev Genet , vol.15 , Issue.2 , pp. 107-120
    • Bordbar, A.1    Monk, J.M.2    King, Z.A.3    Palsson, B.O.4
  • 8
    • 0034798879 scopus 로고    scopus 로고
    • Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments
    • Burgard AP, Vaidyaraman S, Maranas CD (2001) Minimal reaction sets for Escherichia coli metabolism under different growth requirements and uptake environments. Biotechnol Prog 17(5):791–797.
    • (2001) Biotechnol Prog , vol.17 , Issue.5 , pp. 791-797
    • Burgard, A.P.1    Vaidyaraman, S.2    Maranas, C.D.3
  • 9
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • Mahadevan R, Schilling C (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276.
    • (2003) Metab Eng , vol.5 , Issue.4 , pp. 264-276
    • Mahadevan, R.1    Schilling, C.2
  • 10
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340.
    • (2002) Biophys J , vol.83 , Issue.3 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 15
    • 84939810702 scopus 로고    scopus 로고
    • A hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation
    • Angione C, Pratanwanich N, Lió P (2015) A hybrid of metabolic flux analysis and bayesian factor modeling for multiomic temporal pathway activation. ACS Synth Biol 4(8):880–889.
    • (2015) ACS Synth Biol , vol.4 , Issue.8 , pp. 880-889
    • Angione, C.1    Pratanwanich, N.2    Lió, P.3
  • 18
    • 84886474269 scopus 로고    scopus 로고
    • Synthetic biology, part b: Computer aided design and DNA assembly
    • Elsevier Science, Amsterdam
    • Voigt C (2011) Synthetic biology, part b: computer aided design and DNA assembly. Methods in enzymology. Elsevier Science, Amsterdam. https://books.google.co.uk/books?id=9uPvZWiabr4C.
    • (2011) Methods in Enzymology
    • Voigt, C.1
  • 20
    • 19644386033 scopus 로고    scopus 로고
    • Regulatory on/off minimization of metabolic flux changes after genetic perturbations
    • Shlomi T, Berkman O, Ruppin E (2005) Regulatory on/off minimization of metabolic flux changes after genetic perturbations. Proc Natl Acad Sci USA 102(21):7695–7700.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.21 , pp. 7695-7700
    • Shlomi, T.1    Berkman, O.2    Ruppin, E.3
  • 21
    • 84942693276 scopus 로고    scopus 로고
    • Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival
    • Megchelenbrink W, Katzir R, Lu X, Ruppin E, Notebaart RA (2015) Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival. Proc Natl Acad Sci 112(39):12217–12222.
    • (2015) Proc Natl Acad Sci , vol.112 , Issue.39 , pp. 12217-12222
    • Megchelenbrink, W.1    Katzir, R.2    Lu, X.3    Ruppin, E.4    Notebaart, R.A.5
  • 22
    • 84961904036 scopus 로고    scopus 로고
    • Iterative multi level calibration of metabolic networks
    • Conway M, Angione C, Liò P (2016) Iterative multi level calibration of metabolic networks. Curr Bioinforma 11(1):93–105.
    • (2016) Curr Bioinforma , vol.11 , Issue.1 , pp. 93-105
    • Conway, M.1    Angione, C.2    Liò, P.3
  • 24
    • 84944727589 scopus 로고    scopus 로고
    • Predictive analytics of environmental adaptability in multi-omic network models
    • Angione C, Lió P (2015) Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep 5:15147.
    • (2015) Sci Rep , vol.5
    • Angione, C.1    Lió, P.2
  • 25
  • 27
    • 77953296954 scopus 로고    scopus 로고
    • Multi-objective mixed integer strategy for the optimisation of biological networks
    • Sendin J, Exler O, Banga JR (2010) Multi-objective mixed integer strategy for the optimisation of biological networks. IET Syst Biol 4(3):236–248.
    • (2010) IET Syst Biol , vol.4 , Issue.3 , pp. 236-248
    • Sendin, J.1    Exler, O.2    Banga, J.R.3
  • 28
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. http://dx.doi.org/10.1109/4235.996017.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 29
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol 3(4):257–271.
    • (1999) IEEE Trans Evol , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 30
    • 34548108555 scopus 로고    scopus 로고
    • Moea/d: A multiobjective evolutionary algorithm based on decomposition
    • Zhang Q, Li H (2007) Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731.
    • (2007) IEEE Trans Evol Comput , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 32
    • 84866090747 scopus 로고    scopus 로고
    • Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks
    • Kelk SM, Olivier BG, Stougie L, Bruggeman FJ (2012) Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci Rep 2:580.
    • (2012) Sci Rep , vol.2
    • Kelk, S.M.1    Olivier, B.G.2    Stougie, L.3    Bruggeman, F.J.4
  • 33
    • 84929485274 scopus 로고    scopus 로고
    • Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models
    • Maarleveld TR, Wortel MT, Olivier BG, Teusink B, Bruggeman FJ (2015) Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models. PLoS Comput Biol 11(4):e1004166.
    • (2015) Plos Comput Biol , vol.11 , Issue.4
    • Maarleveld, T.R.1    Wortel, M.T.2    Olivier, B.G.3    Teusink, B.4    Bruggeman, F.J.5
  • 34
    • 69149110444 scopus 로고    scopus 로고
    • Multiobjective flux balancing using the NISE method for metabolic network analysis
    • Oh YG, Lee DY, Lee SY, Park S (2009) Multiobjective flux balancing using the NISE method for metabolic network analysis. Biotechnol Prog 25(4):999–1008.
    • (2009) Biotechnol Prog , vol.25 , Issue.4 , pp. 999-1008
    • Oh, Y.G.1    Lee, D.Y.2    Lee, S.Y.3    Park, S.4
  • 35
    • 85012280756 scopus 로고    scopus 로고
    • A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems
    • Budinich M, Bourdon J, Larhlimi A, Eveillard D (2017) A multi-objective constraint-based approach for modeling genome-scale microbial ecosystems. PloS One 12(2):e0171744.
    • (2017) Plos One , vol.12 , Issue.2
    • Budinich, M.1    Bourdon, J.2    Larhlimi, A.3    Eveillard, D.4
  • 37
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4):e1003580.
    • (2014) Plos Comput Biol , vol.10 , Issue.4
    • Machado, D.1    Herrgård, M.2
  • 38
    • 0035824029 scopus 로고    scopus 로고
    • Regulation of gene expression in flux balance models of metabolism
    • Covert MW, Schilling CH, Palsson B (2001) Regulation of gene expression in flux balance models of metabolism. J Theor Biol 213(1):73–88.
    • (2001) J Theor Biol , vol.213 , Issue.1 , pp. 73-88
    • Covert, M.W.1    Schilling, C.H.2    Palsson, B.3
  • 39
    • 78049255973 scopus 로고    scopus 로고
    • Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
    • Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci 107(41):17845–17850.
    • (2010) Proc Natl Acad Sci , vol.107 , Issue.41 , pp. 17845-17850
    • Chandrasekaran, S.1    Price, N.D.2
  • 40
    • 84892690947 scopus 로고    scopus 로고
    • Metabolic constraint-based refinement of transcriptional regulatory networks
    • Chandrasekaran S, Price ND (2013) Metabolic constraint-based refinement of transcriptional regulatory networks. PLoS Comput Biol 9(12):e1003370.
    • (2013) Plos Comput Biol , vol.9 , Issue.12
    • Chandrasekaran, S.1    Price, N.D.2
  • 41
    • 84945144145 scopus 로고    scopus 로고
    • Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA
    • Rügen M, Bockmayr A, Steuer R (2015) Elucidating temporal resource allocation and diurnal dynamics in phototrophic metabolism using conditional FBA. Sci Rep 5, 15247.
    • (2015) Sci Rep , vol.5
    • Rügen, M.1    Bockmayr, A.2    Steuer, R.3
  • 43
    • 84978924623 scopus 로고    scopus 로고
    • Multiplex methods provide effective integration of multi-omic data in genome-scale models
    • Angione C, Conway M, Lió P (2016) Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinf 17(4):83.
    • (2016) BMC Bioinf , vol.17 , Issue.4
    • Angione, C.1    Conway, M.2    Lió, P.3
  • 45
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segre D, Vitkup D, Church GM (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci 99(23):15112–15117.
    • (2002) Proc Natl Acad Sci , vol.99 , Issue.23 , pp. 15112-15117
    • Segre, D.1    Vitkup, D.2    Church, G.M.3
  • 47
    • 84858002174 scopus 로고    scopus 로고
    • Exploring the gap between dynamic and constraint-based models of metabolism
    • Machado D, Costa RS, Ferreira EC, Rocha I, Tidor B (2012) Exploring the gap between dynamic and constraint-based models of metabolism. Metab Eng 14(2):112–119.
    • (2012) Metab Eng , vol.14 , Issue.2 , pp. 112-119
    • Machado, D.1    Costa, R.S.2    Ferreira, E.C.3    Rocha, I.4    Tidor, B.5
  • 48
    • 84870676608 scopus 로고    scopus 로고
    • Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks
    • Brochado AR, Andrejev S, Maranas CD, Patil KR (2012) Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS Comput Biol 8(11):e1002758.
    • (2012) Plos Comput Biol , vol.8 , Issue.11
    • Brochado, A.R.1    Rejev, S.2    Maranas, C.D.3    Patil, K.R.4
  • 49
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T (2010) Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics 26(12):i255–i260.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. i255-i260
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 51
    • 84974663176 scopus 로고    scopus 로고
    • Advances in the integration of transcriptional regulatory information into genome-scale metabolic models
    • Vivek-Ananth R, Samal A (2016) Advances in the integration of transcriptional regulatory information into genome-scale metabolic models. Biosystems 147:1–10.
    • (2016) Biosystems , vol.147 , pp. 1-10
    • Vivek-Ananth, R.1    Samal, A.2
  • 52
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker SA, Palsson BØ (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5):e1000082.
    • (2008) Plos Comput Biol , vol.4 , Issue.5
    • Becker, S.A.1    Palsson, B.Ø.2
  • 54
    • 77956417789 scopus 로고    scopus 로고
    • Computational reconstruction of tissue-specific metabolic models: Application to human liver metabolism
    • Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6(1):401.
    • (2010) Mol Syst Biol , vol.6 , Issue.1
    • Jerby, L.1    Shlomi, T.2    Ruppin, E.3
  • 55
    • 84896701551 scopus 로고    scopus 로고
    • Fast reconstruction of compact context-specific metabolic network models
    • Vlassis N, Pacheco MP, Sauter T (2014) Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 10(1):e1003424.
    • (2014) Plos Comput Biol , vol.10 , Issue.1
    • Vlassis, N.1    Pacheco, M.P.2    Sauter, T.3
  • 56
    • 84870933131 scopus 로고    scopus 로고
    • Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
    • Wang Y, Eddy JA, Price ND (2012) Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 6(1):153.
    • (2012) BMC Syst Biol , vol.6 , Issue.1
    • Wang, Y.1    Eddy, J.A.2    Price, N.D.3
  • 58
    • 84905400331 scopus 로고    scopus 로고
    • An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli
    • Carrera J, Estrela R, Luo J, Rai N, Tsoukalas A, Tagkopoulos I (2014) An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli. Mol Syst Biol 10(7):735.
    • (2014) Mol Syst Biol , vol.10 , Issue.7
    • Carrera, J.1    Estrela, R.2    Luo, J.3    Rai, N.4    Tsoukalas, A.5    Tagkopoulos, I.6
  • 59
    • 85013046059 scopus 로고    scopus 로고
    • Making life difficult for clostridium difficile: Augmenting the pathogen’s metabolic model with transcriptomic and codon usage data for better therapeutic target characterization
    • Kashaf SS, Angione C, Lió P (2017) Making life difficult for clostridium difficile: augmenting the pathogen’s metabolic model with transcriptomic and codon usage data for better therapeutic target characterization. BMC Syst Biol 11(1):25.
    • (2017) BMC Syst Biol , vol.11 , Issue.1
    • Kashaf, S.S.1    Angione, C.2    Lió, P.3
  • 60
  • 61
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3):303.
    • (2008) Nat Biotechnol , vol.26 , Issue.3
    • Ringnér, M.1
  • 68
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li C, Li H (2008) Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24(9):1175–1182.
    • (2008) Bioinformatics , vol.24 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.