메뉴 건너뛰기




Volumn 149, Issue 12, 2017, Pages 1105-1118

A common mechanism for CFTR potentiators

Author keywords

[No Author keywords available]

Indexed keywords

AMINOPHENOL DERIVATIVE; CHLORIDE CHANNEL STIMULATING AGENT; CYSTIC FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR; IVACAFTOR; PROTEIN BINDING; QUINOLONE DERIVATIVE;

EID: 85036616784     PISSN: 00221295     EISSN: 15407748     Source Type: Journal    
DOI: 10.1085/jgp.201711886     Document Type: Article
Times cited : (47)

References (61)
  • 1
    • 0037042224 scopus 로고    scopus 로고
    • Nucleoside triphosphate pentose ring impact on CFTR gating and hydrolysis
    • Aleksandrov, A.A., L. Aleksandrov, and J.R. Riordan. 2002. Nucleoside triphosphate pentose ring impact on CFTR gating and hydrolysis. FEBS Lett. 518:183-188. https ://doi .org /10 .1016 /S0014-5793(02)02698-4
    • (2002) FEBS Lett , vol.518 , pp. 183-188
    • Aleksandrov, A.A.1    Aleksandrov, L.2    Riordan, J.R.3
  • 2
    • 84926373070 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane conductance regulator modulators: The end of the beginning
    • Barry, P.J., N. Ronan, and B.J. Plant. 2015. Cystic fibrosis transmembrane conductance regulator modulators: The end of the beginning. Semin. Respir. Crit. Care Med. 36:287-298. https :// doi .org /10 .1055 /s-0035-1546821
    • (2015) Semin. Respir. Crit. Care Med , vol.36 , pp. 287-298
    • Barry, P.J.1    Ronan, N.2    Plant, B.J.3
  • 3
    • 0026532895 scopus 로고
    • Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR)
    • Bear, C.E., C.H. Li, N. Kartner, R.J. Bridges, T.J. Jensen, M. Ramjeesingh, and J.R. Riordan. 1992. Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell. 68:809-818. https ://doi .org /10 .1016 /0092-8674(92)90155-6
    • (1992) Cell , vol.68 , pp. 809-818
    • Bear, C.E.1    Li, C.H.2    Kartner, N.3    Bridges, R.J.4    Jensen, T.J.5    Ramjeesingh, M.6    Riordan, J.R.7
  • 5
    • 33947725805 scopus 로고    scopus 로고
    • G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects
    • Bompadre, S.G., Y. Sohma, M. Li, and T.C. Hwang. 2007. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. J. Gen. Physiol. 129:285-298. https ://doi .org /10 .1085 /jgp .200609667
    • (2007) J. Gen. Physiol , vol.129 , pp. 285-298
    • Bompadre, S.G.1    Sohma, Y.2    Li, M.3    Hwang, T.C.4
  • 6
    • 41949115564 scopus 로고    scopus 로고
    • Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog
    • Bompadre, S.G., M. Li, and T.C. Hwang. 2008. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. J. Biol. Chem. 283:5364-5369. https ://doi .org /10 .1074 /jbc .M709417200
    • (2008) J. Biol. Chem , vol.283 , pp. 5364-5369
    • Bompadre, S.G.1    Li, M.2    Hwang, T.C.3
  • 7
    • 33644863604 scopus 로고    scopus 로고
    • Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl-channel
    • Cai, Z., A. Taddei, and D.N. Sheppard. 2006. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl-channel. J. Biol. Chem. 281:1970-1977. https ://doi .org /10 .1074 /jbc .M510576200
    • (2006) J. Biol. Chem , vol.281 , pp. 1970-1977
    • Cai, Z.1    Taddei, A.2    Sheppard, D.N.3
  • 8
    • 84928229130 scopus 로고    scopus 로고
    • Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels
    • Chaves, L.A.P., and D.C. Gadsby. 2015. Cysteine accessibility probes timing and extent of NBD separation along the dimer interface in gating CFTR channels. J. Gen. Physiol. 145:261-283. https :// doi .org /10 .1085 /jgp .201411347
    • (2015) J. Gen. Physiol , vol.145 , pp. 261-283
    • Chaves, L.A.P.1    Gadsby, D.C.2
  • 10
    • 17144456826 scopus 로고    scopus 로고
    • Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms
    • Csanády, L. 2000. Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms. Biophys. J. 78:785-799. https ://doi .org /10 .1016 /S0006-3495(00)76636-7
    • (2000) Biophys. J , vol.78 , pp. 785-799
    • Csanády, L.1
  • 11
    • 84908227848 scopus 로고    scopus 로고
    • Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects
    • Csanády, L., and B. Töröcsik. 2014. Structure-activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects. J. Gen. Physiol. 144:321-336. https ://doi .org /10 .1085 /jgp .201411246
    • (2014) J. Gen. Physiol , vol.144 , pp. 321-336
    • Csanády, L.1    Töröcsik, B.2
  • 12
    • 75749153312 scopus 로고    scopus 로고
    • Strict coupling between CFTR's catalytic cycle and gating of its Cl-ion pore revealed by distributions of open channel burst durations
    • Csanády, L., P. Vergani, and D.C. Gadsby. 2010. Strict coupling between CFTR's catalytic cycle and gating of its Cl-ion pore revealed by distributions of open channel burst durations. Proc. Natl. Acad. Sci. USA. 107:1241-1246. https ://doi .org /10 .1073 / pnas .0911061107
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 1241-1246
    • Csanády, L.1    Vergani, P.2    Gadsby, D.C.3
  • 13
    • 33645533055 scopus 로고    scopus 로고
    • The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating
    • Cui, L., L. Aleksandrov, Y.-X. Hou, M. Gentzsch, J.-H. Chen, J.R. Riordan, and A.A. Aleksandrov. 2006. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. J. Physiol. 572:347-358. https ://doi .org /10 .1113 /jphysiol .2005 .099457
    • (2006) J. Physiol , vol.572 , pp. 347-358
    • Cui, L.1    Aleksandrov, L.2    Hou, Y.-X.3    Gentzsch, M.4    Chen, J.-H.5    Riordan, J.R.6    Aleksandrov, A.A.7
  • 16
    • 65249147217 scopus 로고    scopus 로고
    • Cooperative assembly and misfolding of CFTR domains in vivo
    • Du, K., and G.L. Lukacs. 2009. Cooperative assembly and misfolding of CFTR domains in vivo. Mol. Biol. Cell. 20:1903-1915. https :// doi .org /10 .1091 /mbc .E08-09-0950
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1903-1915
    • Du, K.1    Lukacs, G.L.2
  • 17
    • 11444266284 scopus 로고    scopus 로고
    • The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR
    • Du, K., M. Sharma, and G.L. Lukacs. 2005. The DeltaF508 cystic fibrosis mutation impairs domain-domain interactions and arrests post-translational folding of CFTR. Nat. Struct. Mol. Biol. 12:17-25. https ://doi .org /10 .1038 /nsmb882
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 17-25
    • Du, K.1    Sharma, M.2    Lukacs, G.L.3
  • 18
    • 84868243529 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATPindependent manner
    • Eckford, P.D., C. Li, M. Ramjeesingh, and C.E. Bear. 2012. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATPindependent manner. J. Biol. Chem. 287:36639-36649. https :// doi .org /10 .1074 /jbc .M112 .393637
    • (2012) J. Biol. Chem , vol.287 , pp. 36639-36649
    • Eckford, P.D.1    Li, C.2    Ramjeesingh, M.3    Bear, C.E.4
  • 20
    • 0028070453 scopus 로고
    • Effects of pyrophosphate and nucleotide analogs suggest a role for ATP hydrolysis in cystic fibrosis transmembrane regulator channel gating
    • Gunderson, K.L., and R.R. Kopito. 1994. Effects of pyrophosphate and nucleotide analogs suggest a role for ATP hydrolysis in cystic fibrosis transmembrane regulator channel gating. J. Biol. Chem. 269:19349-19353
    • (1994) J. Biol. Chem , vol.269 , pp. 19349-19353
    • Gunderson, K.L.1    Kopito, R.R.2
  • 21
    • 0029117303 scopus 로고
    • Conformational states of CFTR associated with channel gating: The role of ATP binding and hydrolysis
    • Gunderson, K.L., and R.R. Kopito. 1995. Conformational states of CFTR associated with channel gating: The role of ATP binding and hydrolysis. Cell. 82:231-239. https ://doi .org /10 .1016 /0092-8674(95)90310-0
    • (1995) Cell , vol.82 , pp. 231-239
    • Gunderson, K.L.1    Kopito, R.R.2
  • 22
    • 84918587553 scopus 로고    scopus 로고
    • Discovery of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator
    • Hadida, S., F. Van Goor, J. Zhou, V. Arumugam, J. McCartney, A. Hazlewood, C. Decker, P. Negulescu, and P.D.J. Grootenhuis. 2014. Discovery of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator. J. Med. Chem. 57:9776-9795. https ://doi .org /10 .1021 /jm5012808
    • (2014) J. Med. Chem , vol.57 , pp. 9776-9795
    • Hadida, S.1    Van Goor, F.2    Zhou, J.3    Arumugam, V.4    McCartney, J.5    Hazlewood, A.6    Decker, C.7    Negulescu, P.8    Grootenhuis, P.D.J.9
  • 23
    • 0032754371 scopus 로고    scopus 로고
    • Molecular pharmacology of the CFTR Cl-channel
    • Hwang, T.C., and D.N. Sheppard. 1999. Molecular pharmacology of the CFTR Cl-channel. Trends Pharmacol. Sci. 20:448-453. https :// doi .org /10 .1016 /S0165-6147(99)01386-3
    • (1999) Trends Pharmacol. Sci , vol.20 , pp. 448-453
    • Hwang, T.C.1    Sheppard, D.N.2
  • 24
    • 65749102092 scopus 로고    scopus 로고
    • Gating of the CFTR Clchannel by ATP-driven nucleotide-binding domain dimerisation
    • Hwang, T.C., and D.N. Sheppard. 2009. Gating of the CFTR Clchannel by ATP-driven nucleotide-binding domain dimerisation. J. Physiol. 587:2151-2161. https ://doi .org /10 .1113 /jphysiol .2009 .171595
    • (2009) J. Physiol , vol.587 , pp. 2151-2161
    • Hwang, T.C.1    Sheppard, D.N.2
  • 25
    • 0030773897 scopus 로고    scopus 로고
    • Genistein potentiates wild-type and delta F508-CFTR channel activity
    • Hwang, T.C., F. Wang, I.C. Yang, and W.W. Reenstra. 1997. Genistein potentiates wild-type and delta F508-CFTR channel activity. Am. J. Physiol. 273:C988-C998
    • (1997) Am. J. Physiol , vol.273 , pp. C988-C998
    • Hwang, T.C.1    Wang, F.2    Yang, I.C.3    Reenstra, W.W.4
  • 26
    • 84875048537 scopus 로고    scopus 로고
    • Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle
    • Jih, K.Y., and T.C. Hwang. 2013. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc. Natl. Acad. Sci. USA. 110:4404-4409. https ://doi .org /10 .1073 /pnas .1215982110
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 4404-4409
    • Jih, K.Y.1    Hwang, T.C.2
  • 27
    • 84870795585 scopus 로고    scopus 로고
    • Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation
    • Jih, K.Y., Y. Sohma, and T.C. Hwang. 2012. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation. J. Gen. Physiol. 140:347-359. https ://doi .org /10 .1085 /jgp .201210834
    • (2012) J. Gen. Physiol , vol.140 , pp. 347-359
    • Jih, K.Y.1    Sohma, Y.2    Hwang, T.C.3
  • 28
    • 85032868650 scopus 로고    scopus 로고
    • CFTR potentiators: From bench to bedside
    • In press
    • Jih, K.Y., W.Y. Lin, Y. Sohma, and T.C. Hwang. 2017. CFTR potentiators: From bench to bedside. Curr. Opin. Pharmacol. In press. https ://doi .org /10 .1016 /j .coph .2017 .09 .015
    • (2017) Curr. Opin. Pharmacol
    • Jih, K.Y.1    Lin, W.Y.2    Sohma, Y.3    Hwang, T.C.4
  • 29
    • 78650045527 scopus 로고    scopus 로고
    • On the mechanism of CFTR inhibition by a thiazolidinone derivative
    • Kopeikin, Z., Y. Sohma, M. Li, and T.C. Hwang. 2010. On the mechanism of CFTR inhibition by a thiazolidinone derivative. J. Gen. Physiol. 136:659-671. https ://doi .org /10 .1085 /jgp .201010518
    • (2010) J. Gen. Physiol , vol.136 , pp. 659-671
    • Kopeikin, Z.1    Sohma, Y.2    Li, M.3    Hwang, T.C.4
  • 30
    • 84926090443 scopus 로고    scopus 로고
    • Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels
    • Kopeikin, Z., Z. Yuksek, H.Y. Yang, and S.G. Bompadre. 2014. Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels. J. Cyst. Fibros. 13:508-514. https ://doi .org /10 .1016 /j .jcf .2014 .04 .003
    • (2014) J. Cyst. Fibros , vol.13 , pp. 508-514
    • Kopeikin, Z.1    Yuksek, Z.2    Yang, H.Y.3    Bompadre, S.G.4
  • 31
    • 84908261565 scopus 로고    scopus 로고
    • A single amino acid substitution in CFTR converts ATP to an inhibitory ligand
    • Lin, W.Y., K.Y. Jih, and T.C. Hwang. 2014. A single amino acid substitution in CFTR converts ATP to an inhibitory ligand. J. Gen. Physiol. 144:311-320. https ://doi .org /10 .1085 /jgp .201411247
    • (2014) J. Gen. Physiol , vol.144 , pp. 311-320
    • Lin, W.Y.1    Jih, K.Y.2    Hwang, T.C.3
  • 32
    • 84984918778 scopus 로고    scopus 로고
    • Synergistic potentiation of cystic fibrosis transmembrane conductance regulator gating by two chemically distinct potentiators, ivacaftor (VX-770) and 5-nitro-2-(3-phenylpropylamino) benzoate
    • Lin, W.Y., Y. Sohma, and T.C. Hwang. 2016. Synergistic potentiation of cystic fibrosis transmembrane conductance regulator gating by two chemically distinct potentiators, ivacaftor (VX-770) and 5-nitro-2-(3-phenylpropylamino) benzoate. Mol. Pharmacol. 90:275-285. https ://doi .org /10 .1124 /mol .116 .104570
    • (2016) Mol. Pharmacol , vol.90 , pp. 275-285
    • Lin, W.Y.1    Sohma, Y.2    Hwang, T.C.3
  • 33
    • 85016073190 scopus 로고    scopus 로고
    • Molecular structure of the human CFTR ion channel
    • Liu, F., Z. Zhang, L. Csanády, D.C. Gadsby, and J. Chen. 2017. Molecular structure of the human CFTR ion channel. Cell. 169:85-95.e8. https ://doi .org /10 .1016 /j .cell .2017 .02 .024
    • (2017) Cell , vol.169
    • Liu, F.1    Zhang, Z.2    Csanády, L.3    Gadsby, D.C.4    Chen, J.5
  • 34
    • 0036896008 scopus 로고    scopus 로고
    • Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxininduced intestinal fluid secretion
    • Ma, T., J.R. Thiagarajah, H. Yang, N.D. Sonawane, C. Folli, L.J. Galietta, and A.S. Verkman. 2002. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxininduced intestinal fluid secretion. J. Clin. Invest. 110:1651-1658. https ://doi .org /10 .1172 /JCI0216112
    • (2002) J. Clin. Invest , vol.110 , pp. 1651-1658
    • Ma, T.1    Thiagarajah, J.R.2    Yang, H.3    Sonawane, N.D.4    Folli, C.5    Galietta, L.J.6    Verkman, A.S.7
  • 35
    • 77953796491 scopus 로고    scopus 로고
    • Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs
    • Miki, H., Z. Zhou, M. Li, T.C. Hwang, and S.G. Bompadre. 2010. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs. J. Biol. Chem. 285:19967-19975. https ://doi .org /10 .1074 /jbc .M109 .092684
    • (2010) J. Biol. Chem , vol.285 , pp. 19967-19975
    • Miki, H.1    Zhou, Z.2    Li, M.3    Hwang, T.C.4    Bompadre, S.G.5
  • 36
    • 0035896542 scopus 로고    scopus 로고
    • Regulation of the cystic fibrosis transmembrane conductance regulator Clchannel by its R domain
    • Ostedgaard, L.S., O. Baldursson, and M.J. Welsh. 2001. Regulation of the cystic fibrosis transmembrane conductance regulator Clchannel by its R domain. J. Biol. Chem. 276:7689-7692. https :// doi .org /10 .1074 /jbc .R100001200
    • (2001) J. Biol. Chem , vol.276 , pp. 7689-7692
    • Ostedgaard, L.S.1    Baldursson, O.2    Welsh, M.J.3
  • 37
    • 20944442087 scopus 로고    scopus 로고
    • Phenylglycine and sulfonamide correctors of defective delta F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating
    • Pedemonte, N., N.D. Sonawane, A. Taddei, J. Hu, O. Zegarra-Moran, Y.F. Suen, L.I. Robins, C.W. Dicus, D. Willenbring, M.H. Nantz, et al. 2005. Phenylglycine and sulfonamide correctors of defective delta F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol. Pharmacol. 67:1797-1807. https ://doi .org /10 .1124 /mol .105 .010959
    • (2005) Mol. Pharmacol , vol.67 , pp. 1797-1807
    • Pedemonte, N.1    Sonawane, N.D.2    Taddei, A.3    Hu, J.4    Zegarra-Moran, O.5    Suen, Y.F.6    Robins, L.I.7    Dicus, C.W.8    Willenbring, D.9    Nantz, M.H.10
  • 38
    • 0025947680 scopus 로고
    • Regulation of absorption in the human sweat duct
    • Quinton, P.M., and M.M. Reddy. 1991. Regulation of absorption in the human sweat duct. Adv. Exp. Med. Biol. 290:159-170
    • (1991) Adv. Exp. Med. Biol , vol.290 , pp. 159-170
    • Quinton, P.M.1    Reddy, M.M.2
  • 40
    • 58149279835 scopus 로고    scopus 로고
    • Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: Folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2
    • Rosser, M.F.N., D.E. Grove, L. Chen, and D.M. Cyr. 2008. Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: Folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2. Mol. Biol. Cell. 19:4570-4579. https ://doi .org /10 .1091 /mbc .E08-04-0357
    • (2008) Mol. Biol. Cell , vol.19 , pp. 4570-4579
    • Rosser, M.F.N.1    Grove, D.E.2    Chen, L.3    Cyr, D.M.4
  • 41
    • 84879000844 scopus 로고    scopus 로고
    • Cystic fibrosis transmembrane regulator correctors and potentiators
    • Rowe, S.M., and A.S. Verkman. 2013. Cystic fibrosis transmembrane regulator correctors and potentiators. Cold Spring Harb. Perspect. Med. 3:a009761. https ://doi .org /10 .1101 /cshperspect .a009761
    • (2013) Cold Spring Harb. Perspect. Med , vol.3
    • Rowe, S.M.1    Verkman, A.S.2
  • 42
    • 18344387226 scopus 로고    scopus 로고
    • Cystic fibrosis
    • Rowe, S.M., S. Miller, and E.J. Sorscher. 2005. Cystic fibrosis. N. Engl. J. Med. 352:1992-2001. https ://doi .org /10 .1056 /NEJMra043184
    • (2005) N. Engl. J. Med , vol.352 , pp. 1992-2001
    • Rowe, S.M.1    Miller, S.2    Sorscher, E.J.3
  • 43
    • 85131480932 scopus 로고    scopus 로고
    • Cystic Fibrosis and the CFTR Anion Channel
    • CRC Press, Boca Raton, FL
    • Sohma, Y., and T.C. Hwang. 2015. Cystic Fibrosis and the CFTR Anion Channel. In Handbook of Ion Channels. CRC Press, Boca Raton, FL, 627-648. https ://doi .org /10 .1201 /b18027-48
    • (2015) Handbook of Ion Channels , pp. 627-648
    • Sohma, Y.1    Hwang, T.C.2
  • 44
    • 33846521753 scopus 로고    scopus 로고
    • The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer
    • Stratford, F.L., M. Ramjeesingh, J.C. Cheung, L.J. Huan, and C.E. Bear. 2007. The Walker B motif of the second nucleotide-binding domain (NBD2) of CFTR plays a key role in ATPase activity by the NBD1-NBD2 heterodimer. Biochem. J. 401:581-586. https :// doi .org /10 .1042 /BJ20060968
    • (2007) Biochem. J , vol.401 , pp. 581-586
    • Stratford, F.L.1    Ramjeesingh, M.2    Cheung, J.C.3    Huan, L.J.4    Bear, C.E.5
  • 45
    • 11444265307 scopus 로고    scopus 로고
    • Side chain and backbone contributions of Phe508 to CFTR folding
    • Thibodeau, P.H., C.A. Brautigam, M. Machius, and P.J. Thomas. 2005. Side chain and backbone contributions of Phe508 to CFTR folding. Nat. Struct. Mol. Biol. 12:10-16. https ://doi .org /10 .1038 /nsmb881
    • (2005) Nat. Struct. Mol. Biol , vol.12 , pp. 10-16
    • Thibodeau, P.H.1    Brautigam, C.A.2    Machius, M.3    Thomas, P.J.4
  • 46
    • 64549132504 scopus 로고    scopus 로고
    • Statedependent modulation of CFTR gating by pyrophosphate
    • Tsai, M.F., H. Shimizu, Y. Sohma, M. Li, and T.C. Hwang. 2009. Statedependent modulation of CFTR gating by pyrophosphate. J. Gen. Physiol. 133:405-419. https ://doi .org /10 .1085 /jgp .200810186
    • (2009) J. Gen. Physiol , vol.133 , pp. 405-419
    • Tsai, M.F.1    Shimizu, H.2    Sohma, Y.3    Li, M.4    Hwang, T.C.5
  • 47
    • 77951706563 scopus 로고    scopus 로고
    • Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel
    • Tsai, M.F., M. Li, and T.C. Hwang. 2010. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. J. Gen. Physiol. 135:399-414. https ://doi .org /10 .1085 /jgp .201010399
    • (2010) J. Gen. Physiol , vol.135 , pp. 399-414
    • Tsai, M.F.1    Li, M.2    Hwang, T.C.3
  • 50
    • 84890435909 scopus 로고    scopus 로고
    • Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function
    • Van Goor, F., H. Yu, B. Burton, and B.J. Hoffman. 2014. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J. Cyst. Fibros. 13:29-36. https ://doi .org /10 .1016 /j .jcf .2013 .06 .008
    • (2014) J. Cyst. Fibros , vol.13 , pp. 29-36
    • Van Goor, F.1    Yu, H.2    Burton, B.3    Hoffman, B.J.4
  • 53
    • 0037246832 scopus 로고    scopus 로고
    • On the mechanism of MgATP-dependent gating of CFTR Cl-channels
    • Vergani, P., A.C. Nairn, and D.C. Gadsby. 2003. On the mechanism of MgATP-dependent gating of CFTR Cl-channels. J. Gen. Physiol. 121:17-36. https ://doi .org /10 .1085 /jgp .20028673
    • (2003) J. Gen. Physiol , vol.121 , pp. 17-36
    • Vergani, P.1    Nairn, A.C.2    Gadsby, D.C.3
  • 54
    • 14544300522 scopus 로고    scopus 로고
    • CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains
    • Vergani, P., S.W. Lockless, A.C. Nairn, and D.C. Gadsby. 2005. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature. 433:876-880. https ://doi .org /10 .1038 /nature03313
    • (2005) Nature , vol.433 , pp. 876-880
    • Vergani, P.1    Lockless, S.W.2    Nairn, A.C.3    Gadsby, D.C.4
  • 55
    • 21244494942 scopus 로고    scopus 로고
    • Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs
    • Wang, W., G. Li, J.P. Clancy, and K.L. Kirk. 2005. Activating cystic fibrosis transmembrane conductance regulator channels with pore blocker analogs. J. Biol. Chem. 280:23622-23630. https ://doi .org /10 .1074 /jbc .M503118200
    • (2005) J. Biol. Chem , vol.280 , pp. 23622-23630
    • Wang, W.1    Li, G.2    Clancy, J.P.3    Kirk, K.L.4
  • 56
    • 0027162649 scopus 로고
    • Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis
    • Welsh, M.J., and A.E. Smith. 1993. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 73:1251-1254. https ://doi .org /10 .1016 /0092-8674(93)90353-R
    • (1993) Cell , vol.73 , pp. 1251-1254
    • Welsh, M.J.1    Smith, A.E.2
  • 57
    • 0042317111 scopus 로고    scopus 로고
    • Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating
    • Yang, H., A.A. Shelat, R.K. Guy, V.S. Gopinath, T. Ma, K. Du, G.L. Lukacs, A. Taddei, C. Folli, N. Pedemonte, et al. 2003. Nanomolar affinity small molecule correctors of defective Delta F508-CFTR chloride channel gating. J. Biol. Chem. 278:35079-35085. https :// doi .org /10 .1074 /jbc .M303098200
    • (2003) J. Biol. Chem , vol.278 , pp. 35079-35085
    • Yang, H.1    Shelat, A.A.2    Guy, R.K.3    Gopinath, V.S.4    Ma, T.5    Du, K.6    Lukacs, G.L.7    Taddei, A.8    Folli, C.9    Pedemonte, N.10
  • 58
    • 84920412211 scopus 로고    scopus 로고
    • Modulation of CFTR gating by permeant ions
    • Yeh, H.I., J.T. Yeh, and T.C. Hwang. 2015. Modulation of CFTR gating by permeant ions. J. Gen. Physiol. 145:47-60. https ://doi .org /10 .1085 /jgp .201411272
    • (2015) J. Gen. Physiol , vol.145 , pp. 47-60
    • Yeh, H.I.1    Yeh, J.T.2    Hwang, T.C.3
  • 60
    • 29244490620 scopus 로고    scopus 로고
    • High affinity ATP/ADP analogues as new tools for studying CFTR gating
    • Zhou, Z., X. Wang, M. Li, Y. Sohma, X. Zou, and T.C. Hwang. 2005. High affinity ATP/ADP analogues as new tools for studying CFTR gating. J. Physiol. 569:447-457. https ://doi .org /10 .1113 /jphysiol .2005 .095083
    • (2005) J. Physiol , vol.569 , pp. 447-457
    • Zhou, Z.1    Wang, X.2    Li, M.3    Sohma, Y.4    Zou, X.5    Hwang, T.C.6
  • 61
    • 0029616734 scopus 로고
    • Cystic fibrosis: Genotypic and phenotypic variations
    • Zielenski, J., and L.C. Tsui. 1995. Cystic fibrosis: Genotypic and phenotypic variations. Annu. Rev. Genet. 29:777-807. https ://doi .org /10 .1146 /annurev .ge .29 .120195 .004021
    • (1995) Annu. Rev. Genet , vol.29 , pp. 777-807
    • Zielenski, J.1    Tsui, L.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.