-
1
-
-
84930671336
-
Time-Series Clustering - A Decade Review
-
Aghabozorgi, S., A. S., Shirkhorshidi, and T. Y., Wah. 2015. “Time-Series Clustering - A Decade Review.” Information Systems 53: 16–38. doi:10.1016/j.is.2015.04.007.
-
(2015)
Information Systems
, vol.53
, pp. 16-38
-
-
Aghabozorgi, S.1
Shirkhorshidi, A.S.2
Wah, T.Y.3
-
2
-
-
84888368346
-
ANN-based Prediction of Surface and Hole Quality in Drilling of AISI D2 Cold Work Tool Steel
-
Akıncıoğlu, S., F., Mendi, A., Çiçek, and G., Akıncıoğlu. 2013. “ANN-based Prediction of Surface and Hole Quality in Drilling of AISI D2 Cold Work Tool Steel.” International Journal of Advanced Manufacturing Technology 68 (1–4): 197–207. doi:10.1007/s00170-012-4719-6.
-
(2013)
International Journal of Advanced Manufacturing Technology
, vol.68
, Issue.1-4
, pp. 197-207
-
-
Akıncıoğlu, S.1
Mendi, F.2
Çiçek, A.3
Akıncıoğlu, G.4
-
3
-
-
84864055450
-
An Intelligent System Approach for Surface Roughness and Vibrations Prediction in Cylindrical Grinding
-
Asiltürk, İ., M., Tinkir, H., El Monuayri, and L., Çelik. 2012. “An Intelligent System Approach for Surface Roughness and Vibrations Prediction in Cylindrical Grinding.” International Journal of Computer Integrated Manufacturing 25 (8): 750–759. doi:10.1080/0951192X.2012.665185.
-
(2012)
International Journal of Computer Integrated Manufacturing
, vol.25
, Issue.8
, pp. 750-759
-
-
Asiltürk, İ.1
Tinkir, M.2
El Monuayri, H.3
Çelik, L.4
-
4
-
-
33745108812
-
A Bit Level Representation for Time-Series Data Mining with Shape Based Similarity
-
Bagnall, A., E., Keogh, S., Lonardi, and G., Janacek. 2006. “A Bit Level Representation for Time-Series Data Mining with Shape Based Similarity.” Data Mining and Knowledge Discovery 13: 11–40. doi:10.1007/s10618-005-0028-0.
-
(2006)
Data Mining and Knowledge Discovery
, vol.13
, pp. 11-40
-
-
Bagnall, A.1
Keogh, E.2
Lonardi, S.3
Janacek, G.4
-
5
-
-
0348222721
-
New Applications of Ensembles of Classifiers
-
Barandela, R., R. M., Valdovinos, and J. S., Sánchez. 2003. “New Applications of Ensembles of Classifiers.” Pattern Analysis & Applications 6 (3): 245–256. doi:10.1007/s10044-003-0192-z.
-
(2003)
Pattern Analysis & Applications
, vol.6
, Issue.3
, pp. 245-256
-
-
Barandela, R.1
Valdovinos, R.M.2
Sánchez, J.S.3
-
7
-
-
0031191630
-
The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms
-
Bradley, A. P., 1997. “The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms.” Pattern Recognition 30 (7): 1145–1159. doi:10.1016/S0031-3203(96)00142-2.
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
9
-
-
0346786584
-
Arcing Classifier (With Discussion and a Rejoinder by the Author)
-
Breiman, L., 1998. “Arcing Classifier (With Discussion and a Rejoinder by the Author).” The Annals of Statistics 26 (3): 801–849. doi:10.1214/aos/1024691079.
-
(1998)
The Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
10
-
-
0035478854
-
Random Forests
-
Breiman, L., 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
11
-
-
0003802343
-
-
NY: Chapman and Hall/CRC press
-
Breiman, L., J., Friedman, C. J., Stone, and R. A., Olshen. 1984. Classification and Regression Trees. NY: Chapman and Hall/CRC press.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
12
-
-
27144549260
-
Special Issue on Learning from Imbalanced Data Sets
-
Chawla, N. V., N., Japkowicz, and A., Kotcz. 2004. “Special Issue on Learning from Imbalanced Data Sets.” ACM SIGKDD Explorations Newsletter 6 (1): 1–6. doi:10.1145/1007730.1007733.
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
13
-
-
44949099428
-
A Neural Network-Based Approach for Dynamic Quality Prediction in A Plastic Injection Molding Process
-
Chen, W. C., P. H., Tai, M. W., Wang, W. J., Deng, and C. T., Chen. 2008. “A Neural Network-Based Approach for Dynamic Quality Prediction in A Plastic Injection Molding Process.” Expert Systems with Applications 35 (3): 843–849. doi:10.1016/j.eswa.2007.07.037.
-
(2008)
Expert Systems with Applications
, vol.35
, Issue.3
, pp. 843-849
-
-
Chen, W.C.1
Tai, P.H.2
Wang, M.W.3
Deng, W.J.4
Chen, C.T.5
-
14
-
-
49349092175
-
Machining Parameters Optimization on the Die Casting Process of Magnesium Alloy Using the Grey-Based Fuzzy Algorithm
-
Chiang, K. T., N. M., Liu, and C. C., Chou. 2008. “Machining Parameters Optimization on the Die Casting Process of Magnesium Alloy Using the Grey-Based Fuzzy Algorithm.” International Journal of Advanced Manufacturing Technology 38 (3–4): 229–237. doi:10.1007/s00170-007-1103-z.
-
(2008)
International Journal of Advanced Manufacturing Technology
, vol.38
, Issue.3-4
, pp. 229-237
-
-
Chiang, K.T.1
Liu, N.M.2
Chou, C.C.3
-
15
-
-
84874614565
-
A System for Online Detection and Classification of Wafer Bin Map Defect Patterns for Manufacturing Intelligence
-
Chien, C. F., S. C., Hsu, and Y. J., Chen. 2013. “A System for Online Detection and Classification of Wafer Bin Map Defect Patterns for Manufacturing Intelligence.” International Journal of Production Research 51 (8): 2324–2338. doi:10.1080/00207543.2012.737943.
-
(2013)
International Journal of Production Research
, vol.51
, Issue.8
, pp. 2324-2338
-
-
Chien, C.F.1
Hsu, S.C.2
Chen, Y.J.3
-
16
-
-
84925489151
-
Enhanced Real-Time Quality Prediction Model Based on Feature Selected Nonlinear Calibration Techniques
-
Cho, H. W., 2015. “Enhanced Real-Time Quality Prediction Model Based on Feature Selected Nonlinear Calibration Techniques.” International Journal of Advanced Manufacturing Technology 78 (1–4): 633–640. doi:10.1007/s00170-014-6664-z.
-
(2015)
International Journal of Advanced Manufacturing Technology
, vol.78
, Issue.1-4
, pp. 633-640
-
-
Cho, H.W.1
-
17
-
-
77249166490
-
Integrating Support Vector Machine and Genetic Algorithm to Implement Dynamic Wafer Quality Prediction System
-
Chou, P. H., M. J., Wu, and K. K., Chen. 2010. “Integrating Support Vector Machine and Genetic Algorithm to Implement Dynamic Wafer Quality Prediction System.” Expert Systems with Applications 37 (6): 4413–4424. doi:10.1016/j.eswa.2009.11.087.
-
(2010)
Expert Systems with Applications
, vol.37
, Issue.6
, pp. 4413-4424
-
-
Chou, P.H.1
Wu, M.J.2
Chen, K.K.3
-
18
-
-
34249753618
-
Support-Vector Networks
-
Cortes, C., and V., Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20 (3): 273–297. doi:10.1007/BF00994018.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
19
-
-
39049108570
-
Reducing Manufacturing Defect through Statistical Investigation in an Integrated Aluminium Industry
-
Das, N., 2008. “Reducing Manufacturing Defect through Statistical Investigation in an Integrated Aluminium Industry.” International Journal of Advanced Manufacturing Technology 36 (3–4): 315–321. doi:10.1007/s00170-006-0850-6.
-
(2008)
International Journal of Advanced Manufacturing Technology
, vol.36
, Issue.3-4
, pp. 315-321
-
-
Das, N.1
-
20
-
-
0034205086
-
Fuzzy Neural Networks-Based Quality Prediction System for Sintering Process
-
Er, M. J., J., Liao, and J., Lin. 2000. “Fuzzy Neural Networks-Based Quality Prediction System for Sintering Process.” IEEE Transactions on Fuzzy Systems 8 (3): 314–324. doi:10.1109/91.855919.
-
(2000)
IEEE Transactions on Fuzzy Systems
, vol.8
, Issue.3
, pp. 314-324
-
-
Er, M.J.1
Liao, J.2
Lin, J.3
-
21
-
-
50949133669
-
LIBLINEAR: A Library for Large Linear Classification
-
Fan, R. E., K. W., Chang, C. J., Hsieh, X. R., Wang, and C. J., Lin. 2008. “LIBLINEAR: A Library for Large Linear Classification.” Journal of Machine Learning Research 9: 1871–1874.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
-
23
-
-
70449657271
-
Simulation-Enabled Casting Product Defect Prediction in Die Casting Process
-
Fu, M. W., and M. S., Yong. 2009. “Simulation-Enabled Casting Product Defect Prediction in Die Casting Process.” International Journal of Production Research 47 (18): 5203–5216. doi:10.1080/00207540801935616.
-
(2009)
International Journal of Production Research
, vol.47
, Issue.18
, pp. 5203-5216
-
-
Fu, M.W.1
Yong, M.S.2
-
24
-
-
84862515469
-
A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches
-
Galar, M., A., Fernandez, E., Barrenechea, H., Bustince, and F., Herrera. 2012. “A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches.” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42 (4): 463–484. doi:10.1109/TSMCC.2011.2161285.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)
, vol.42
, Issue.4
, pp. 463-484
-
-
Galar, M.1
Fernandez, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
25
-
-
79954505385
-
Quality Prediction for Polypropylene Production Process Based on CLGPR Model
-
Ge, Z., T., Chen, and Z., Song. 2011. “Quality Prediction for Polypropylene Production Process Based on CLGPR Model.” Control Engineering Practice 19 (5): 423–432. doi:10.1016/j.conengprac.2011.01.002.
-
(2011)
Control Engineering Practice
, vol.19
, Issue.5
, pp. 423-432
-
-
Ge, Z.1
Chen, T.2
Song, Z.3
-
27
-
-
84939964995
-
Prediction of Grain Size and Mechanical Properties in Friction Stir Welded Pure Copper Joints Using a Thermal Model
-
Heidarzadeh, A., M., Jabbari, and M., Esmaily. 2015. “Prediction of Grain Size and Mechanical Properties in Friction Stir Welded Pure Copper Joints Using a Thermal Model.” International Journal of Advanced Manufacturing Technology 77 (9–12): 1819–1829. doi:10.1007/s00170-014-6543-7.
-
(2015)
International Journal of Advanced Manufacturing Technology
, vol.77
, Issue.9-12
, pp. 1819-1829
-
-
Heidarzadeh, A.1
Jabbari, M.2
Esmaily, M.3
-
29
-
-
84893838936
-
Minimum Porosity Formation in Pressure Die Casting by Taguchi Method
-
Hsu, Q. C., and A. T., Do. 2013. “Minimum Porosity Formation in Pressure Die Casting by Taguchi Method.” Mathematical Problems in Engineering, 2013.
-
(2013)
Mathematical Problems in Engineering
, pp. 2013
-
-
Hsu, Q.C.1
Do, A.T.2
-
30
-
-
33845536164
-
The Class Imbalance Problem: A Systematic Study
-
Japkowicz, N., and S., Stephen. 2002. “The Class Imbalance Problem: A Systematic Study.” Intelligent Data Analysis 6 (5): 429–449.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
31
-
-
84867648889
-
-
VDI nachrichten, Berlin
-
Kagermann, H., W. D., Lukas, and W., Wahlster. 2011. Industrie 4.0: Mit Dem Internet Der Dinge Auf Dem Weg Zur 4. Industriellen Revolution, 13, 11. VDI nachrichten, Berlin.
-
(2011)
Industrie 4.0: Mit Dem Internet Der Dinge Auf Dem Weg Zur 4. Industriellen Revolution
, pp. 13, 11
-
-
Kagermann, H.1
Lukas, W.D.2
Wahlster, W.3
-
32
-
-
55649107774
-
Prevention of Defects in Castings Using Back Propagation Neural Networks
-
Karunakar, D. B., and G. L., Datta. 2008. “Prevention of Defects in Castings Using Back Propagation Neural Networks.” International Journal of Advanced Manufacturing Technology 39 (11–12): 1111–1124. doi:10.1007/s00170-007-1289-0.
-
(2008)
International Journal of Advanced Manufacturing Technology
, vol.39
, Issue.11-12
, pp. 1111-1124
-
-
Karunakar, D.B.1
Datta, G.L.2
-
33
-
-
0346873996
-
Prediction of Welding Parameters for Pipeline Welding Using an Intelligent System
-
Kim, I. S., Y. J., Jeong, C. W., Lee, and P. K., Yarlagadda. 2003. “Prediction of Welding Parameters for Pipeline Welding Using an Intelligent System.” International Journal of Advanced Manufacturing Technology 22 (9–10): 713–719. doi:10.1007/s00170-003-1589-y.
-
(2003)
International Journal of Advanced Manufacturing Technology
, vol.22
, Issue.9-10
, pp. 713-719
-
-
Kim, I.S.1
Jeong, Y.J.2
Lee, C.W.3
Yarlagadda, P.K.4
-
34
-
-
28544445673
-
Simulation-Based Selection of Optimum Pressure Die-Casting Process Parameters Using Neural Nets and Genetic Algorithms
-
Krimpenis, A., Y. J., Jeong, C. W., Lee, and P. K. D. V., Yarlagadda. 2006. “Simulation-Based Selection of Optimum Pressure Die-Casting Process Parameters Using Neural Nets and Genetic Algorithms.” International Journal of Advanced Manufacturing Technology 27 (5–6): 509–517. doi:10.1007/s00170-004-2218-0.
-
(2006)
International Journal of Advanced Manufacturing Technology
, vol.27
, Issue.5-6
, pp. 509-517
-
-
Krimpenis, A.1
Jeong, Y.J.2
Lee, C.W.3
Yarlagadda, P.K.D.V.4
-
35
-
-
1642333180
-
A Genetic Neural Fuzzy System and Its Application in Quality Prediction in the Injection Process
-
Li, E., L., Jia, and J., Yu. 2004. “A Genetic Neural Fuzzy System and Its Application in Quality Prediction in the Injection Process.” Chemical Engineering Communications 191 (3): 335–355. doi:10.1080/00986440490272537.
-
(2004)
Chemical Engineering Communications
, vol.191
, Issue.3
, pp. 335-355
-
-
Li, E.1
Jia, L.2
Yu, J.3
-
36
-
-
64049108468
-
Exploratory Undersampling for Class-Imbalance Learning
-
Liu, X. Y., J., Wu, and Z. H., Zhou. 2009. “Exploratory Undersampling for Class-Imbalance Learning.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (2): 539–550. doi:10.1109/TSMCB.2008.2007853.
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.Y.1
Wu, J.2
Zhou, Z.H.3
-
37
-
-
85019584258
-
Will the Industrial Internet Disrupt the Smart Factory of the Future?
-
accessed February29, 2016
-
Lueth, K. L., 2016. “Will the Industrial Internet Disrupt the Smart Factory of the Future?” IoT Analytics (accessed February29, 2016). http://iot-analytics.com/industrial-internet-disrupt-smart-factory
-
(2016)
IoT Analytics
-
-
Lueth, K.L.1
-
38
-
-
67749118296
-
Prediction of Sink Depths Using Nonlinear Modeling of Injection Molding Variables
-
Mathivanan, D., and N. S., Parthasarathy. 2009. “Prediction of Sink Depths Using Nonlinear Modeling of Injection Molding Variables.” International Journal of Advanced Manufacturing Technology 43 (7–8): 654–663. doi:10.1007/s00170-008-1749-1.
-
(2009)
International Journal of Advanced Manufacturing Technology
, vol.43
, Issue.7-8
, pp. 654-663
-
-
Mathivanan, D.1
Parthasarathy, N.S.2
-
40
-
-
77951519810
-
Prediction of the Quality of Pulsed Metal Inert Gas Welding Using Statistical Parameters of Arc Signals in Artificial Neural Network
-
Pal, S., S. K., Pal, and A. K., Samantaray. 2010. “Prediction of the Quality of Pulsed Metal Inert Gas Welding Using Statistical Parameters of Arc Signals in Artificial Neural Network.” International Journal of Computer Integrated Manufacturing 23 (5): 453–465. doi:10.1080/09511921003667698.
-
(2010)
International Journal of Computer Integrated Manufacturing
, vol.23
, Issue.5
, pp. 453-465
-
-
Pal, S.1
Pal, S.K.2
Samantaray, A.K.3
-
43
-
-
33646433948
-
Data Mining for Improving the Quality of Manufacturing: A Feature Set Decomposition Approach
-
Rokach, L., and O., Maimon. 2006. “Data Mining for Improving the Quality of Manufacturing: A Feature Set Decomposition Approach.” Journal of Intelligent Manufacturing 17 (3): 285–299. doi:10.1007/s10845-005-0005-x.
-
(2006)
Journal of Intelligent Manufacturing
, vol.17
, Issue.3
, pp. 285-299
-
-
Rokach, L.1
Maimon, O.2
-
44
-
-
61449263062
-
Surface Roughness Prediction in Machining Using Soft Computing
-
Samanta, B., 2009. “Surface Roughness Prediction in Machining Using Soft Computing.” International Journal of Computer Integrated Manufacturing 22 (3): 257–266. doi:10.1080/09511920802287138.
-
(2009)
International Journal of Computer Integrated Manufacturing
, vol.22
, Issue.3
, pp. 257-266
-
-
Samanta, B.1
-
45
-
-
84891971333
-
Machine-Learning-Based Defect Prediction in High Precision Foundry Production
-
edited by Becker, L. M., Hauppauge: Nova Science Publishers
-
Santos, I., J., Nieves, P., Bringas, and Y., Penya. 2010. “Machine-Learning-Based Defect Prediction in High Precision Foundry Production.” In Structural Steel and Castings: Shapes and Standards, Properties and Applications, edited by Becker, L. M., Hauppauge: Nova Science Publishers, 259–276.
-
(2010)
Structural Steel and Castings: Shapes and Standards, Properties and Applications
, pp. 259-276
-
-
Santos, I.1
Nieves, J.2
Bringas, P.3
Penya, Y.4
-
46
-
-
84994501810
-
Bayesian Inference-Based Investment-Casting Defect Analysis System for Industrial Application
-
90 (9-12): 3301-3315
-
Sata, A., and B., Ravi. 2017. “Bayesian Inference-Based Investment-Casting Defect Analysis System for Industrial Application.” International Journal of Advanced Manufacturing Technology 90 (9-12): 3301-3315.
-
(2017)
International Journal of Advanced Manufacturing Technology
-
-
Sata, A.1
Ravi, B.2
-
47
-
-
83555161587
-
Machined Surface Quality Prediction Models Based on Moving Least Squares and Moving Least Absolute Deviations Methods
-
Savalina, I., K., Sabo, and G., Šimunović. 2011. “Machined Surface Quality Prediction Models Based on Moving Least Squares and Moving Least Absolute Deviations Methods.” International Journal of Advanced Manufacturing Technology 57 (9–12): 1099–1106. doi:10.1007/s00170-011-3353-z.
-
(2011)
International Journal of Advanced Manufacturing Technology
, vol.57
, Issue.9-12
, pp. 1099-1106
-
-
Savalina, I.1
Sabo, K.2
Šimunović, G.3
-
48
-
-
0033281701
-
Improved Boosting Algorithms Using Confidence-Rated Predictions
-
Schapire, R. E., and Y., Singer. 1999. “Improved Boosting Algorithms Using Confidence-Rated Predictions.” Machine Learning 37 (3): 297–336. doi:10.1023/A:1007614523901.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
49
-
-
72949118881
-
RUSBoost: A Hybrid Approach to Alleviating Class Imbalance
-
Seiffert, C., T. M., Khoshgoftaar, J., Van Hulse, and A., Napolitano. 2010. “RUSBoost: A Hybrid Approach to Alleviating Class Imbalance.” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans 40 (1): 185–197. doi:10.1109/TSMCA.2009.2029559.
-
(2010)
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans
, vol.40
, Issue.1
, pp. 185-197
-
-
Seiffert, C.1
Khoshgoftaar, T.M.2
Van Hulse, J.3
Napolitano, A.4
-
50
-
-
33846829958
-
Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network and Genetic Algorithm Method
-
Shen, C., L., Wang, and Q., Li. 2007. “Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network and Genetic Algorithm Method.” Journal of Materials Processing Technology 183 (2): 412–418. doi:10.1016/j.jmatprotec.2006.10.036.
-
(2007)
Journal of Materials Processing Technology
, vol.183
, Issue.2
, pp. 412-418
-
-
Shen, C.1
Wang, L.2
Li, Q.3
-
51
-
-
84920955485
-
Improving Quality of Sand Casting Using Taguchi Method and ANN Analysis
-
Singaram, L., 2010. “Improving Quality of Sand Casting Using Taguchi Method and ANN Analysis.” International Journal on Design and Manufacturing Technologies 4 (1): 1–5. doi:10.18000/ijodam.70071.
-
(2010)
International Journal on Design and Manufacturing Technologies
, vol.4
, Issue.1
, pp. 1-5
-
-
Singaram, L.1
-
53
-
-
34547673383
-
Cost-Sensitive Boosting for Classification of Imbalanced Data
-
Sun, Y., M. S., Kamel, A. K. C., Wong, and Y., Wang. 2007. “Cost-Sensitive Boosting for Classification of Imbalanced Data.” Pattern Recognition 40: 3358–3378. doi:10.1016/j.patcog.2007.04.009.
-
(2007)
Pattern Recognition
, vol.40
, pp. 3358-3378
-
-
Sun, Y.1
Kamel, M.S.2
Wong, A.K.C.3
Wang, Y.4
-
54
-
-
0036568640
-
A Genetic Algorithmic Approach for Optimization of Surface Roughness Prediction Model
-
Suresh, P. V. S., P. V., Rao, and S. G., Deshmukh. 2002. “A Genetic Algorithmic Approach for Optimization of Surface Roughness Prediction Model.” International Journal of Machine Tools and Manufacture 42 (6): 675–680. doi:10.1016/S0890-6955(02)00005-6.
-
(2002)
International Journal of Machine Tools and Manufacture
, vol.42
, Issue.6
, pp. 675-680
-
-
Suresh, P.V.S.1
Rao, P.V.2
Deshmukh, S.G.3
-
55
-
-
0037399642
-
Die Casting Process Optimization Using Taguchi Methods
-
Syrcos, G. P., 2003. “Die Casting Process Optimization Using Taguchi Methods.” Journal of Materials Processing Technology 135 (1): 68–74. doi:10.1016/S0924-0136(02)01036-1.
-
(2003)
Journal of Materials Processing Technology
, vol.135
, Issue.1
, pp. 68-74
-
-
Syrcos, G.P.1
-
56
-
-
79955839741
-
Robust Data-Driven Modeling Approach for Real-Time Final Product Quality Prediction in Batch Process Operation
-
Wang, D., 2011. “Robust Data-Driven Modeling Approach for Real-Time Final Product Quality Prediction in Batch Process Operation.” IEEE Transactions on Industrial Informatics 7 (2): 371–377. doi:10.1109/TII.2010.2103401.
-
(2011)
IEEE Transactions on Industrial Informatics
, vol.7
, Issue.2
, pp. 371-377
-
-
Wang, D.1
-
58
-
-
0034627923
-
Prediction of Die Casting Process Parameters by Using an Artificial Neural Network Model for Zinc Alloys
-
Yarlagadda, P. K., 2000. “Prediction of Die Casting Process Parameters by Using an Artificial Neural Network Model for Zinc Alloys.” International Journal of Production Research 38 (1): 119–139. doi:10.1080/002075400189617.
-
(2000)
International Journal of Production Research
, vol.38
, Issue.1
, pp. 119-139
-
-
Yarlagadda, P.K.1
-
59
-
-
85027946008
-
Prediction of Surface Roughness in End Face Milling Based on Gaussian Process Regression and Cause Analysis considering Tool Vibration
-
Zhang, G., J., Li, Y., Chen, Y., Huang, X., Shao, and M., Li. 2014. “Prediction of Surface Roughness in End Face Milling Based on Gaussian Process Regression and Cause Analysis considering Tool Vibration.” International Journal of Advanced Manufacturing Technology 75 (9–12): 1357–1370. doi:10.1007/s00170-014-6232-6.
-
(2014)
International Journal of Advanced Manufacturing Technology
, vol.75
, Issue.9-12
, pp. 1357-1370
-
-
Zhang, G.1
Li, J.2
Chen, Y.3
Huang, Y.4
Shao, X.5
Li, M.6
-
60
-
-
84874324704
-
An Intelligent System for Low-Pressure Die-Cast Process Parameters Optimization
-
Zhang, L., and R., Wang. 2013. “An Intelligent System for Low-Pressure Die-Cast Process Parameters Optimization.” International Journal of Advanced Manufacturing Technology 65 (1–4): 517–524. doi:10.1007/s00170-012-4190-4.
-
(2013)
International Journal of Advanced Manufacturing Technology
, vol.65
, Issue.1-4
, pp. 517-524
-
-
Zhang, L.1
Wang, R.2
|