메뉴 건너뛰기




Volumn 31, Issue 8, 2018, Pages 701-717

Imbalanced classification of manufacturing quality conditions using cost-sensitive decision tree ensembles

Author keywords

cost sensitive ensemble classification; decision tree ensemble; die casting quality analysis; Imbalanced classification; manufacturing quality condition classification

Indexed keywords

ADVANCED ANALYTICS; DATA ANALYTICS; DECISION TREES; DEFECTS; DIE CASTING; QUALITY CONTROL; TREES (MATHEMATICS);

EID: 85035764582     PISSN: 0951192X     EISSN: 13623052     Source Type: Journal    
DOI: 10.1080/0951192X.2017.1407447     Document Type: Article
Times cited : (47)

References (60)
  • 1
    • 84930671336 scopus 로고    scopus 로고
    • Time-Series Clustering - A Decade Review
    • Aghabozorgi, S., A. S., Shirkhorshidi, and T. Y., Wah. 2015. “Time-Series Clustering - A Decade Review.” Information Systems 53: 16–38. doi:10.1016/j.is.2015.04.007.
    • (2015) Information Systems , vol.53 , pp. 16-38
    • Aghabozorgi, S.1    Shirkhorshidi, A.S.2    Wah, T.Y.3
  • 3
    • 84864055450 scopus 로고    scopus 로고
    • An Intelligent System Approach for Surface Roughness and Vibrations Prediction in Cylindrical Grinding
    • Asiltürk, İ., M., Tinkir, H., El Monuayri, and L., Çelik. 2012. “An Intelligent System Approach for Surface Roughness and Vibrations Prediction in Cylindrical Grinding.” International Journal of Computer Integrated Manufacturing 25 (8): 750–759. doi:10.1080/0951192X.2012.665185.
    • (2012) International Journal of Computer Integrated Manufacturing , vol.25 , Issue.8 , pp. 750-759
    • Asiltürk, İ.1    Tinkir, M.2    El Monuayri, H.3    Çelik, L.4
  • 4
    • 33745108812 scopus 로고    scopus 로고
    • A Bit Level Representation for Time-Series Data Mining with Shape Based Similarity
    • Bagnall, A., E., Keogh, S., Lonardi, and G., Janacek. 2006. “A Bit Level Representation for Time-Series Data Mining with Shape Based Similarity.” Data Mining and Knowledge Discovery 13: 11–40. doi:10.1007/s10618-005-0028-0.
    • (2006) Data Mining and Knowledge Discovery , vol.13 , pp. 11-40
    • Bagnall, A.1    Keogh, E.2    Lonardi, S.3    Janacek, G.4
  • 7
    • 0031191630 scopus 로고    scopus 로고
    • The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms
    • Bradley, A. P., 1997. “The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms.” Pattern Recognition 30 (7): 1145–1159. doi:10.1016/S0031-3203(96)00142-2.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 9
    • 0346786584 scopus 로고    scopus 로고
    • Arcing Classifier (With Discussion and a Rejoinder by the Author)
    • Breiman, L., 1998. “Arcing Classifier (With Discussion and a Rejoinder by the Author).” The Annals of Statistics 26 (3): 801–849. doi:10.1214/aos/1024691079.
    • (1998) The Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L., 2001. “Random Forests.” Machine Learning 45 (1): 5–32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 12
    • 27144549260 scopus 로고    scopus 로고
    • Special Issue on Learning from Imbalanced Data Sets
    • Chawla, N. V., N., Japkowicz, and A., Kotcz. 2004. “Special Issue on Learning from Imbalanced Data Sets.” ACM SIGKDD Explorations Newsletter 6 (1): 1–6. doi:10.1145/1007730.1007733.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 13
    • 44949099428 scopus 로고    scopus 로고
    • A Neural Network-Based Approach for Dynamic Quality Prediction in A Plastic Injection Molding Process
    • Chen, W. C., P. H., Tai, M. W., Wang, W. J., Deng, and C. T., Chen. 2008. “A Neural Network-Based Approach for Dynamic Quality Prediction in A Plastic Injection Molding Process.” Expert Systems with Applications 35 (3): 843–849. doi:10.1016/j.eswa.2007.07.037.
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 843-849
    • Chen, W.C.1    Tai, P.H.2    Wang, M.W.3    Deng, W.J.4    Chen, C.T.5
  • 14
    • 49349092175 scopus 로고    scopus 로고
    • Machining Parameters Optimization on the Die Casting Process of Magnesium Alloy Using the Grey-Based Fuzzy Algorithm
    • Chiang, K. T., N. M., Liu, and C. C., Chou. 2008. “Machining Parameters Optimization on the Die Casting Process of Magnesium Alloy Using the Grey-Based Fuzzy Algorithm.” International Journal of Advanced Manufacturing Technology 38 (3–4): 229–237. doi:10.1007/s00170-007-1103-z.
    • (2008) International Journal of Advanced Manufacturing Technology , vol.38 , Issue.3-4 , pp. 229-237
    • Chiang, K.T.1    Liu, N.M.2    Chou, C.C.3
  • 15
    • 84874614565 scopus 로고    scopus 로고
    • A System for Online Detection and Classification of Wafer Bin Map Defect Patterns for Manufacturing Intelligence
    • Chien, C. F., S. C., Hsu, and Y. J., Chen. 2013. “A System for Online Detection and Classification of Wafer Bin Map Defect Patterns for Manufacturing Intelligence.” International Journal of Production Research 51 (8): 2324–2338. doi:10.1080/00207543.2012.737943.
    • (2013) International Journal of Production Research , vol.51 , Issue.8 , pp. 2324-2338
    • Chien, C.F.1    Hsu, S.C.2    Chen, Y.J.3
  • 16
    • 84925489151 scopus 로고    scopus 로고
    • Enhanced Real-Time Quality Prediction Model Based on Feature Selected Nonlinear Calibration Techniques
    • Cho, H. W., 2015. “Enhanced Real-Time Quality Prediction Model Based on Feature Selected Nonlinear Calibration Techniques.” International Journal of Advanced Manufacturing Technology 78 (1–4): 633–640. doi:10.1007/s00170-014-6664-z.
    • (2015) International Journal of Advanced Manufacturing Technology , vol.78 , Issue.1-4 , pp. 633-640
    • Cho, H.W.1
  • 17
    • 77249166490 scopus 로고    scopus 로고
    • Integrating Support Vector Machine and Genetic Algorithm to Implement Dynamic Wafer Quality Prediction System
    • Chou, P. H., M. J., Wu, and K. K., Chen. 2010. “Integrating Support Vector Machine and Genetic Algorithm to Implement Dynamic Wafer Quality Prediction System.” Expert Systems with Applications 37 (6): 4413–4424. doi:10.1016/j.eswa.2009.11.087.
    • (2010) Expert Systems with Applications , vol.37 , Issue.6 , pp. 4413-4424
    • Chou, P.H.1    Wu, M.J.2    Chen, K.K.3
  • 18
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C., and V., Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20 (3): 273–297. doi:10.1007/BF00994018.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 19
    • 39049108570 scopus 로고    scopus 로고
    • Reducing Manufacturing Defect through Statistical Investigation in an Integrated Aluminium Industry
    • Das, N., 2008. “Reducing Manufacturing Defect through Statistical Investigation in an Integrated Aluminium Industry.” International Journal of Advanced Manufacturing Technology 36 (3–4): 315–321. doi:10.1007/s00170-006-0850-6.
    • (2008) International Journal of Advanced Manufacturing Technology , vol.36 , Issue.3-4 , pp. 315-321
    • Das, N.1
  • 20
    • 0034205086 scopus 로고    scopus 로고
    • Fuzzy Neural Networks-Based Quality Prediction System for Sintering Process
    • Er, M. J., J., Liao, and J., Lin. 2000. “Fuzzy Neural Networks-Based Quality Prediction System for Sintering Process.” IEEE Transactions on Fuzzy Systems 8 (3): 314–324. doi:10.1109/91.855919.
    • (2000) IEEE Transactions on Fuzzy Systems , vol.8 , Issue.3 , pp. 314-324
    • Er, M.J.1    Liao, J.2    Lin, J.3
  • 23
    • 70449657271 scopus 로고    scopus 로고
    • Simulation-Enabled Casting Product Defect Prediction in Die Casting Process
    • Fu, M. W., and M. S., Yong. 2009. “Simulation-Enabled Casting Product Defect Prediction in Die Casting Process.” International Journal of Production Research 47 (18): 5203–5216. doi:10.1080/00207540801935616.
    • (2009) International Journal of Production Research , vol.47 , Issue.18 , pp. 5203-5216
    • Fu, M.W.1    Yong, M.S.2
  • 25
    • 79954505385 scopus 로고    scopus 로고
    • Quality Prediction for Polypropylene Production Process Based on CLGPR Model
    • Ge, Z., T., Chen, and Z., Song. 2011. “Quality Prediction for Polypropylene Production Process Based on CLGPR Model.” Control Engineering Practice 19 (5): 423–432. doi:10.1016/j.conengprac.2011.01.002.
    • (2011) Control Engineering Practice , vol.19 , Issue.5 , pp. 423-432
    • Ge, Z.1    Chen, T.2    Song, Z.3
  • 27
    • 84939964995 scopus 로고    scopus 로고
    • Prediction of Grain Size and Mechanical Properties in Friction Stir Welded Pure Copper Joints Using a Thermal Model
    • Heidarzadeh, A., M., Jabbari, and M., Esmaily. 2015. “Prediction of Grain Size and Mechanical Properties in Friction Stir Welded Pure Copper Joints Using a Thermal Model.” International Journal of Advanced Manufacturing Technology 77 (9–12): 1819–1829. doi:10.1007/s00170-014-6543-7.
    • (2015) International Journal of Advanced Manufacturing Technology , vol.77 , Issue.9-12 , pp. 1819-1829
    • Heidarzadeh, A.1    Jabbari, M.2    Esmaily, M.3
  • 29
    • 84893838936 scopus 로고    scopus 로고
    • Minimum Porosity Formation in Pressure Die Casting by Taguchi Method
    • Hsu, Q. C., and A. T., Do. 2013. “Minimum Porosity Formation in Pressure Die Casting by Taguchi Method.” Mathematical Problems in Engineering, 2013.
    • (2013) Mathematical Problems in Engineering , pp. 2013
    • Hsu, Q.C.1    Do, A.T.2
  • 30
    • 33845536164 scopus 로고    scopus 로고
    • The Class Imbalance Problem: A Systematic Study
    • Japkowicz, N., and S., Stephen. 2002. “The Class Imbalance Problem: A Systematic Study.” Intelligent Data Analysis 6 (5): 429–449.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 32
    • 55649107774 scopus 로고    scopus 로고
    • Prevention of Defects in Castings Using Back Propagation Neural Networks
    • Karunakar, D. B., and G. L., Datta. 2008. “Prevention of Defects in Castings Using Back Propagation Neural Networks.” International Journal of Advanced Manufacturing Technology 39 (11–12): 1111–1124. doi:10.1007/s00170-007-1289-0.
    • (2008) International Journal of Advanced Manufacturing Technology , vol.39 , Issue.11-12 , pp. 1111-1124
    • Karunakar, D.B.1    Datta, G.L.2
  • 34
    • 28544445673 scopus 로고    scopus 로고
    • Simulation-Based Selection of Optimum Pressure Die-Casting Process Parameters Using Neural Nets and Genetic Algorithms
    • Krimpenis, A., Y. J., Jeong, C. W., Lee, and P. K. D. V., Yarlagadda. 2006. “Simulation-Based Selection of Optimum Pressure Die-Casting Process Parameters Using Neural Nets and Genetic Algorithms.” International Journal of Advanced Manufacturing Technology 27 (5–6): 509–517. doi:10.1007/s00170-004-2218-0.
    • (2006) International Journal of Advanced Manufacturing Technology , vol.27 , Issue.5-6 , pp. 509-517
    • Krimpenis, A.1    Jeong, Y.J.2    Lee, C.W.3    Yarlagadda, P.K.D.V.4
  • 35
    • 1642333180 scopus 로고    scopus 로고
    • A Genetic Neural Fuzzy System and Its Application in Quality Prediction in the Injection Process
    • Li, E., L., Jia, and J., Yu. 2004. “A Genetic Neural Fuzzy System and Its Application in Quality Prediction in the Injection Process.” Chemical Engineering Communications 191 (3): 335–355. doi:10.1080/00986440490272537.
    • (2004) Chemical Engineering Communications , vol.191 , Issue.3 , pp. 335-355
    • Li, E.1    Jia, L.2    Yu, J.3
  • 37
    • 85019584258 scopus 로고    scopus 로고
    • Will the Industrial Internet Disrupt the Smart Factory of the Future?
    • accessed February29, 2016
    • Lueth, K. L., 2016. “Will the Industrial Internet Disrupt the Smart Factory of the Future?” IoT Analytics (accessed February29, 2016). http://iot-analytics.com/industrial-internet-disrupt-smart-factory
    • (2016) IoT Analytics
    • Lueth, K.L.1
  • 38
    • 67749118296 scopus 로고    scopus 로고
    • Prediction of Sink Depths Using Nonlinear Modeling of Injection Molding Variables
    • Mathivanan, D., and N. S., Parthasarathy. 2009. “Prediction of Sink Depths Using Nonlinear Modeling of Injection Molding Variables.” International Journal of Advanced Manufacturing Technology 43 (7–8): 654–663. doi:10.1007/s00170-008-1749-1.
    • (2009) International Journal of Advanced Manufacturing Technology , vol.43 , Issue.7-8 , pp. 654-663
    • Mathivanan, D.1    Parthasarathy, N.S.2
  • 40
    • 77951519810 scopus 로고    scopus 로고
    • Prediction of the Quality of Pulsed Metal Inert Gas Welding Using Statistical Parameters of Arc Signals in Artificial Neural Network
    • Pal, S., S. K., Pal, and A. K., Samantaray. 2010. “Prediction of the Quality of Pulsed Metal Inert Gas Welding Using Statistical Parameters of Arc Signals in Artificial Neural Network.” International Journal of Computer Integrated Manufacturing 23 (5): 453–465. doi:10.1080/09511921003667698.
    • (2010) International Journal of Computer Integrated Manufacturing , vol.23 , Issue.5 , pp. 453-465
    • Pal, S.1    Pal, S.K.2    Samantaray, A.K.3
  • 43
    • 33646433948 scopus 로고    scopus 로고
    • Data Mining for Improving the Quality of Manufacturing: A Feature Set Decomposition Approach
    • Rokach, L., and O., Maimon. 2006. “Data Mining for Improving the Quality of Manufacturing: A Feature Set Decomposition Approach.” Journal of Intelligent Manufacturing 17 (3): 285–299. doi:10.1007/s10845-005-0005-x.
    • (2006) Journal of Intelligent Manufacturing , vol.17 , Issue.3 , pp. 285-299
    • Rokach, L.1    Maimon, O.2
  • 44
    • 61449263062 scopus 로고    scopus 로고
    • Surface Roughness Prediction in Machining Using Soft Computing
    • Samanta, B., 2009. “Surface Roughness Prediction in Machining Using Soft Computing.” International Journal of Computer Integrated Manufacturing 22 (3): 257–266. doi:10.1080/09511920802287138.
    • (2009) International Journal of Computer Integrated Manufacturing , vol.22 , Issue.3 , pp. 257-266
    • Samanta, B.1
  • 46
    • 84994501810 scopus 로고    scopus 로고
    • Bayesian Inference-Based Investment-Casting Defect Analysis System for Industrial Application
    • 90 (9-12): 3301-3315
    • Sata, A., and B., Ravi. 2017. “Bayesian Inference-Based Investment-Casting Defect Analysis System for Industrial Application.” International Journal of Advanced Manufacturing Technology 90 (9-12): 3301-3315.
    • (2017) International Journal of Advanced Manufacturing Technology
    • Sata, A.1    Ravi, B.2
  • 47
    • 83555161587 scopus 로고    scopus 로고
    • Machined Surface Quality Prediction Models Based on Moving Least Squares and Moving Least Absolute Deviations Methods
    • Savalina, I., K., Sabo, and G., Šimunović. 2011. “Machined Surface Quality Prediction Models Based on Moving Least Squares and Moving Least Absolute Deviations Methods.” International Journal of Advanced Manufacturing Technology 57 (9–12): 1099–1106. doi:10.1007/s00170-011-3353-z.
    • (2011) International Journal of Advanced Manufacturing Technology , vol.57 , Issue.9-12 , pp. 1099-1106
    • Savalina, I.1    Sabo, K.2    Šimunović, G.3
  • 48
    • 0033281701 scopus 로고    scopus 로고
    • Improved Boosting Algorithms Using Confidence-Rated Predictions
    • Schapire, R. E., and Y., Singer. 1999. “Improved Boosting Algorithms Using Confidence-Rated Predictions.” Machine Learning 37 (3): 297–336. doi:10.1023/A:1007614523901.
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 50
    • 33846829958 scopus 로고    scopus 로고
    • Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network and Genetic Algorithm Method
    • Shen, C., L., Wang, and Q., Li. 2007. “Optimization of Injection Molding Process Parameters Using Combination of Artificial Neural Network and Genetic Algorithm Method.” Journal of Materials Processing Technology 183 (2): 412–418. doi:10.1016/j.jmatprotec.2006.10.036.
    • (2007) Journal of Materials Processing Technology , vol.183 , Issue.2 , pp. 412-418
    • Shen, C.1    Wang, L.2    Li, Q.3
  • 51
    • 84920955485 scopus 로고    scopus 로고
    • Improving Quality of Sand Casting Using Taguchi Method and ANN Analysis
    • Singaram, L., 2010. “Improving Quality of Sand Casting Using Taguchi Method and ANN Analysis.” International Journal on Design and Manufacturing Technologies 4 (1): 1–5. doi:10.18000/ijodam.70071.
    • (2010) International Journal on Design and Manufacturing Technologies , vol.4 , Issue.1 , pp. 1-5
    • Singaram, L.1
  • 53
    • 34547673383 scopus 로고    scopus 로고
    • Cost-Sensitive Boosting for Classification of Imbalanced Data
    • Sun, Y., M. S., Kamel, A. K. C., Wong, and Y., Wang. 2007. “Cost-Sensitive Boosting for Classification of Imbalanced Data.” Pattern Recognition 40: 3358–3378. doi:10.1016/j.patcog.2007.04.009.
    • (2007) Pattern Recognition , vol.40 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 54
    • 0036568640 scopus 로고    scopus 로고
    • A Genetic Algorithmic Approach for Optimization of Surface Roughness Prediction Model
    • Suresh, P. V. S., P. V., Rao, and S. G., Deshmukh. 2002. “A Genetic Algorithmic Approach for Optimization of Surface Roughness Prediction Model.” International Journal of Machine Tools and Manufacture 42 (6): 675–680. doi:10.1016/S0890-6955(02)00005-6.
    • (2002) International Journal of Machine Tools and Manufacture , vol.42 , Issue.6 , pp. 675-680
    • Suresh, P.V.S.1    Rao, P.V.2    Deshmukh, S.G.3
  • 55
    • 0037399642 scopus 로고    scopus 로고
    • Die Casting Process Optimization Using Taguchi Methods
    • Syrcos, G. P., 2003. “Die Casting Process Optimization Using Taguchi Methods.” Journal of Materials Processing Technology 135 (1): 68–74. doi:10.1016/S0924-0136(02)01036-1.
    • (2003) Journal of Materials Processing Technology , vol.135 , Issue.1 , pp. 68-74
    • Syrcos, G.P.1
  • 56
    • 79955839741 scopus 로고    scopus 로고
    • Robust Data-Driven Modeling Approach for Real-Time Final Product Quality Prediction in Batch Process Operation
    • Wang, D., 2011. “Robust Data-Driven Modeling Approach for Real-Time Final Product Quality Prediction in Batch Process Operation.” IEEE Transactions on Industrial Informatics 7 (2): 371–377. doi:10.1109/TII.2010.2103401.
    • (2011) IEEE Transactions on Industrial Informatics , vol.7 , Issue.2 , pp. 371-377
    • Wang, D.1
  • 58
    • 0034627923 scopus 로고    scopus 로고
    • Prediction of Die Casting Process Parameters by Using an Artificial Neural Network Model for Zinc Alloys
    • Yarlagadda, P. K., 2000. “Prediction of Die Casting Process Parameters by Using an Artificial Neural Network Model for Zinc Alloys.” International Journal of Production Research 38 (1): 119–139. doi:10.1080/002075400189617.
    • (2000) International Journal of Production Research , vol.38 , Issue.1 , pp. 119-139
    • Yarlagadda, P.K.1
  • 59
    • 85027946008 scopus 로고    scopus 로고
    • Prediction of Surface Roughness in End Face Milling Based on Gaussian Process Regression and Cause Analysis considering Tool Vibration
    • Zhang, G., J., Li, Y., Chen, Y., Huang, X., Shao, and M., Li. 2014. “Prediction of Surface Roughness in End Face Milling Based on Gaussian Process Regression and Cause Analysis considering Tool Vibration.” International Journal of Advanced Manufacturing Technology 75 (9–12): 1357–1370. doi:10.1007/s00170-014-6232-6.
    • (2014) International Journal of Advanced Manufacturing Technology , vol.75 , Issue.9-12 , pp. 1357-1370
    • Zhang, G.1    Li, J.2    Chen, Y.3    Huang, Y.4    Shao, X.5    Li, M.6
  • 60
    • 84874324704 scopus 로고    scopus 로고
    • An Intelligent System for Low-Pressure Die-Cast Process Parameters Optimization
    • Zhang, L., and R., Wang. 2013. “An Intelligent System for Low-Pressure Die-Cast Process Parameters Optimization.” International Journal of Advanced Manufacturing Technology 65 (1–4): 517–524. doi:10.1007/s00170-012-4190-4.
    • (2013) International Journal of Advanced Manufacturing Technology , vol.65 , Issue.1-4 , pp. 517-524
    • Zhang, L.1    Wang, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.