메뉴 건너뛰기




Volumn 23, Issue 5, 2010, Pages 453-465

Prediction of the quality of pulsed metal inert gas welding using statistical parameters of arc signals in artificial neural network

Author keywords

Arc signal; Back propagation neural network; Bead geometry; Deposition efficiency; Distortion; PMIGW; Radial basis function network; Weld strength

Indexed keywords

BACKPROPAGATION; DISTORTION (WAVES); FORECASTING; FUNCTIONS; GAS METAL ARC WELDING; GAS WELDING; INERT GASES; INTELLIGENT SYSTEMS; RADIAL BASIS FUNCTION NETWORKS; TORSIONAL STRESS; WELDS;

EID: 77951519810     PISSN: 0951192X     EISSN: 13623052     Source Type: Journal    
DOI: 10.1080/09511921003667698     Document Type: Article
Times cited : (24)

References (22)
  • 3
    • 10844272469 scopus 로고    scopus 로고
    • Signature analysis for quality monitoring in short circuit gmaw
    • Chu, Y. X., et al. 2004. Signature analysis for quality monitoring in short circuit GMAW. Welding Research Supplement, 83 (12), 336s-343s.
    • (2004) Welding Research Supplement , vol.83 , Issue.12
    • Chu, Y.X.1
  • 4
    • 0029404445 scopus 로고
    • Weld modeling and control using artificial neural networks
    • Cook, G. E., et al. 1995. Weld modeling and control using artificial neural networks. IEEE Transactions on Industrial Application, 31, 1484-1491.
    • (1995) IEEE Transactions on Industrial Application , vol.31 , pp. 1484-1491
    • Cook, G.E.1
  • 5
    • 4043060857 scopus 로고    scopus 로고
    • Prediction of weld quality in pulsed current GMAW process using artificial neural network
    • DOI 10.1179/136217104225012328
    • De, A., Jantre, J., and Ghosh, P. K., 2004. Prediction of weld quality in pulsed current GMAW process using artificial neural network. Science and Technology of Welding and Joining, 9 (3), 253-259. (Pubitemid 39054670)
    • (2004) Science and Technology of Welding and Joining , vol.9 , Issue.3 , pp. 253-259
    • De, A.1    Jantre, J.2    Ghosh, P.K.3
  • 6
    • 0033681938 scopus 로고    scopus 로고
    • On line monitoring of weld defects for short-circuit gas metal Arc welding based on the self-organize feature map neural networks
    • Di, L., Yonglun, S., and Feng, Y., 2000. On line monitoring of weld defects for short-circuit gas metal arc welding based on the self-organize feature map neural networks. Proceedings of International Joint Conference on Neural Network, 5, 239-244.
    • (2000) Proceedings of International Joint Conference on Neural Network , vol.5 , pp. 239-244
    • Di, L.1    Yonglun, S.2    Feng, Y.3
  • 7
    • 0033318988 scopus 로고    scopus 로고
    • Using Al-methods for parameter scheduling, quality control and weld geometry determination in GMA-welding
    • Dilthey, U. and Heidrich, J., 1999. Using AI-methods for parameter scheduling, quality control and weld geometry determination in GMA-welding. ISIJ International, 39 (10), 1067-1074. (Pubitemid 30515240)
    • (1999) ISIJ International , vol.39 , Issue.10 , pp. 1067-1074
    • Dilthey, U.1    Heidrich, J.2
  • 9
    • 0141983135 scopus 로고    scopus 로고
    • A study on the development of the arc stability index using multiple regression analysis in the short-circuit transfer region of gas metal arc welding
    • Kang, M. K. and Rhee, S., 2001. A study on the development of the arc stability index using multiple regression analysis in the short-circuit transfer region of gas metal arc welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215, 195-205. (Pubitemid 33773179)
    • (2001) Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture , vol.215 , Issue.2 , pp. 195-205
    • Kang, M.J.1    Rhee, S.2
  • 10
    • 0346873996 scopus 로고    scopus 로고
    • Prediction of welding parameters for pipeline welding using an intelligent system
    • et al
    • Kim, I. S., et al. 2006. Prediction of welding parameters for pipeline welding using an intelligent system. Journal of Advance Manufacturing Technology, 22, 713-719.
    • (2006) Journal of Advance Manufacturing Technology , vol.22 , pp. 713-719
    • Kim, I.S.1
  • 12
    • 0034261642 scopus 로고    scopus 로고
    • Comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network
    • DOI 10.1016/S0143-8166(00)00097-X
    • Lee, J. and Um, K., 2000. A comparison in a back-bead predication of gas metal arc welding using multiple regression analysis and artificial neural networks. Optics and Lasers in Engineering, 34, 149-158. (Pubitemid 32196002)
    • (2000) Optics and Lasers in Engineering , vol.34 , Issue.3 , pp. 149-158
    • Lee, J.1    Um, K.2
  • 13
    • 13444279168 scopus 로고    scopus 로고
    • The application of artificial neural networks to weld-induced deformation in ship plate
    • Lightfoot, M. P., et al. 2005. The application of artificial neural networks to weld-induced deformation in ship plate. Welding Research Supplement, 84 (2), 23-30.
    • (2005) Welding Research Supplement , vol.84 , Issue.2 , pp. 23-30
    • Lightfoot, M.P.1
  • 14
    • 62349129628 scopus 로고    scopus 로고
    • Minitab Inc, Release 13.31. State College, PA: Minitab Inc
    • TM statistical software. Release 13.31. State College, PA: Minitab Inc.
    • (2000) TM Statistical Software
  • 16
    • 38549164330 scopus 로고    scopus 로고
    • Radial basis function neural network model based prediction of weldplate distortion due to pulsed metal Inert gas welding
    • Pal, S., Pal, S. K., and Samantaray, A. K., 2007. Radial basis function neural network model based prediction of weldplate distortion due to pulsed metal inert gas welding. Science and Technology of Welding and Joining, 12 (8), 725-731.
    • (2007) Science and Technology of Welding and Joining , vol.12 , Issue.8 , pp. 725-731
    • Pal, S.1    Pal, S.K.2    Samantaray, A.K.3
  • 17
    • 42949096408 scopus 로고    scopus 로고
    • Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals
    • DOI 10.1016/j.jmatprotec.2007.09.039, PII S0924013607008990
    • Pal, S., Pal, S. K., and Samantaray, A. K., 2008. Sensor based weld bead geometry prediction in pulsed metal inert gas welding process through artificial neural networks. International Journal of Knowledge-Based and Intelligent Engineering Systems, 12 (2), 101-114. (Pubitemid 351615575)
    • (2008) Journal of Materials Processing Technology , vol.202 , Issue.1-3 , pp. 464-474
    • Pal, S.1    Pal, S.K.2    Samantaray, A.K.3
  • 20
    • 0031095019 scopus 로고    scopus 로고
    • Modelling and optimizing of a mig welding process - A case study using experimental designs and neural networks
    • Tay, K. M. and Butler, C., 1997. Modelling and optimizing of a MIG welding process-a case study using experimental designs and neural networks. Quality and Reliability Engineering International, 13, 61-70. (Pubitemid 127623239)
    • (1997) Quality and Reliability Engineering International , vol.13 , Issue.2 , pp. 61-70
    • Tay, K.M.1    Butler, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.