메뉴 건너뛰기




Volumn 22, Issue 3, 2009, Pages 257-266

Surface roughness prediction in machining using soft computing

Author keywords

Artificial neural network; Average roughness; Computational intelligence; Fuzzy logic; Genetic algorithm; Machining; Process monitoring; Surface texture

Indexed keywords

ALUMINUM ALLOYS; ARTIFICIAL INTELLIGENCE; FUZZY INFERENCE; FUZZY LOGIC; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; INFERENCE ENGINES; MACHINING; MEMBERSHIP FUNCTIONS; MILLING (MACHINING); NEURAL NETWORKS; PROCESS MONITORING; SOFT COMPUTING; TEXTURES;

EID: 61449263062     PISSN: 0951192X     EISSN: 13623052     Source Type: Journal    
DOI: 10.1080/09511920802287138     Document Type: Article
Times cited : (49)

References (35)
  • 4
    • 11344250065 scopus 로고
    • Investigation of cutting condition monitoring by visual measurement of surface texture parameters
    • Chen, F.L., Joo, D., and Black, J.T., 1994. Investigation of cutting condition monitoring by visual measurement of surface texture parameters. International Journal of Computer Integrated Manufacturing, 7 (5), 307-319.
    • (1994) International Journal of Computer Integrated Manufacturing , vol.7 , Issue.5 , pp. 307-319
    • Chen, F.L.1    Joo, D.2    Black, J.T.3
  • 5
    • 0042802940 scopus 로고    scopus 로고
    • Fuzzy-nets based approach to using an accelerometer for an in-process surface roughness prediction system in milling operations
    • Chen, J.C. and Lou, M.S., 2000. Fuzzy-nets based approach to using an accelerometer for an in-process surface roughness prediction system in milling operations. International Journal of Computer Integrated Manufacturing, 13 (4), 358-368.
    • (2000) International Journal of Computer Integrated Manufacturing , vol.13 , Issue.4 , pp. 358-368
    • Chen, J.C.1    Lou, M.S.2
  • 6
    • 0034808424 scopus 로고    scopus 로고
    • A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations
    • Chen, J.C. and Savage, M., 2001. A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations. International Journal of Advanced Manufacturing Technology, 17, 670-676.
    • (2001) International Journal of Advanced Manufacturing Technology , vol.17 , pp. 670-676
    • Chen, J.C.1    Savage, M.2
  • 7
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness predictive modeling: Neural networks versus regression
    • Feng, C.-X. and Wang, X.-F., 2003. Surface roughness predictive modeling: neural networks versus regression. IIE Transactions, 35, 11-27.
    • (2003) IIE Transactions , vol.35 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 8
    • 28944449352 scopus 로고    scopus 로고
    • Selection and validation of predictive regression and neural network models based on designed experiments
    • Feng, C.-X., Yu, Z.-G., and Kusiak, A., 2006. Selection and validation of predictive regression and neural network models based on designed experiments. IIE Transactions, 38, 13-23.
    • (2006) IIE Transactions , vol.38 , pp. 13-23
    • Feng, C.-X.1    Yu, Z.-G.2    Kusiak, A.3
  • 10
    • 0003637791 scopus 로고
    • A genetic algorithm for function optimization: A matlab implementation. North Carolina State University
    • Report no: NCSU-IE-TR-95-09
    • Houk, C.R., Joines, J., and Kay, M.A., 1995. A genetic algorithm for function optimization: a matlab implementation. North Carolina State University, Report no: NCSU-IE-TR-95-09.
    • (1995)
    • Houk, C.R.1    Joines, J.2    Kay, M.A.3
  • 11
    • 0042301798 scopus 로고    scopus 로고
    • A multiple regression model to predict in-process surface roughness in turning operation via accelerometer
    • Huang, L. and Chen, J., 2001. A multiple regression model to predict in-process surface roughness in turning operation via accelerometer. Journal of Industrial Technology, 17 (2), 1-8.
    • (2001) Journal of Industrial Technology , vol.17 , Issue.2 , pp. 1-8
    • Huang, L.1    Chen, J.2
  • 17
    • 42449112371 scopus 로고    scopus 로고
    • Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques
    • Kirby, E.D., Zhang, Z., and Chen, J.C., 2004. Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques. Journal of Industrial Technology, 20 (4), 1-8.
    • (2004) Journal of Industrial Technology , vol.20 , Issue.4 , pp. 1-8
    • Kirby, E.D.1    Zhang, Z.2    Chen, J.C.3
  • 19
    • 0141959043 scopus 로고    scopus 로고
    • An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling
    • Lo, S.-P., 2003. An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. Journal of Materials Processing Technology, 142, 665-675.
    • (2003) Journal of Materials Processing Technology , vol.142 , pp. 665-675
    • Lo, S.-P.1
  • 23
    • 0037427589 scopus 로고    scopus 로고
    • Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning
    • Rishbood, K.A., Dixit, U.S., and Sahasrabudhe, A.D., 2003. Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning. Journal of Materials Processing, 132, 203-214.
    • (2003) Journal of Materials Processing , vol.132 , pp. 203-214
    • Rishbood, K.A.1    Dixit, U.S.2    Sahasrabudhe, A.D.3
  • 24
    • 33144472086 scopus 로고    scopus 로고
    • Samanta, B., 2005. Machine fault detection using neurofuzzy inference systems and genetic algorithms, Paper# DETC2005-84643. In: Proc. of ASME 2005 International Design Engineering Technology Conferences and Computers & Information in Engineering Conference (IDETC/CIE2005). 24-28 Sept. 2005, Long Beach: CA, USA.
    • Samanta, B., 2005. Machine fault detection using neurofuzzy inference systems and genetic algorithms, Paper# DETC2005-84643. In: Proc. of ASME 2005 International Design Engineering Technology Conferences and Computers & Information in Engineering Conference (IDETC/CIE2005). 24-28 Sept. 2005, Long Beach: CA, USA.
  • 28
    • 0037766708 scopus 로고    scopus 로고
    • The effect of cutting parameters on workpiece surface roughness in wire EDM
    • Tosun, N., Cogun, C., and Inan, A., 2003. The effect of cutting parameters on workpiece surface roughness in wire EDM. Machining Science and Technology, 7 (2), 209-219.
    • (2003) Machining Science and Technology , vol.7 , Issue.2 , pp. 209-219
    • Tosun, N.1    Cogun, C.2    Inan, A.3
  • 29
    • 0033117056 scopus 로고    scopus 로고
    • An in-process surface recognition system based on neural networks in end milling cutting operations
    • Tsai, Y.H., Chen, J.C., and Lou, S.-J., 1999. An in-process surface recognition system based on neural networks in end milling cutting operations. International Journal of Machine Tools and Manufacture, 39, 583-605.
    • (1999) International Journal of Machine Tools and Manufacture , vol.39 , pp. 583-605
    • Tsai, Y.H.1    Chen, J.C.2    Lou, S.-J.3
  • 30
    • 0035427810 scopus 로고    scopus 로고
    • Predictions on surface finish in electrical discharge machining based upon neural network models
    • Tsai, K. and Wang, P., 2001. Predictions on surface finish in electrical discharge machining based upon neural network models. International Journal of Machine Tools and Manufacture, 41, 1385-1403.
    • (2001) International Journal of Machine Tools and Manufacture , vol.41 , pp. 1385-1403
    • Tsai, K.1    Wang, P.2
  • 32
    • 3242766806 scopus 로고    scopus 로고
    • A systematic approach for identifying optimum surface roughness performance in end-milling operations
    • Yang, J. and Chen, J., 2001. A systematic approach for identifying optimum surface roughness performance in end-milling operations. Journal of Industrial Technology, 17, 1-8.
    • (2001) Journal of Industrial Technology , vol.17 , pp. 1-8
    • Yang, J.1    Chen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.