메뉴 건너뛰기




Volumn 53, Issue , 2015, Pages 16-38

Time-series clustering - A decade review

Author keywords

Clustering; Distance measure; Evaluation measure; Representations; Time series

Indexed keywords

BIG DATA; CLASSIFICATION (OF INFORMATION); CLUSTER ANALYSIS; GENE EXPRESSION; TIME SERIES; TIME SERIES ANALYSIS;

EID: 84930671336     PISSN: 03064379     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.is.2015.04.007     Document Type: Article
Times cited : (1442)

References (242)
  • 1
    • 84858710111 scopus 로고    scopus 로고
    • A survey of clustering techniques
    • P. Rai, and S. Singh A survey of clustering techniques Int. J. Comput. Appl. 7 12 2010 1 5
    • (2010) Int. J. Comput. Appl. , vol.7 , Issue.12 , pp. 1-5
    • Rai, P.1    Singh, S.2
  • 6
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh, and S. Kasetty On the need for time series data mining benchmarks: a survey and empirical demonstration Data Min. Knowl. Discov. 7 4 2003 349 371
    • (2003) Data Min. Knowl. Discov. , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 8
    • 26944478356 scopus 로고    scopus 로고
    • Segmenting time series: A survey and novel approach
    • E. Keogh, S. Chu, and D. Hart Segmenting time series: a survey and novel approach Data Min. Time Ser. Databases 57 1 2004 1 21
    • (2004) Data Min. Time Ser. Databases , vol.57 , Issue.1 , pp. 1-21
    • Keogh, E.1    Chu, S.2    Hart, D.3
  • 10
    • 84930651768 scopus 로고    scopus 로고
    • Mining massive archives of mice sounds with symbolized representations
    • J. Zakaria, S. Rotschafer, A. Mueen, K. Razak, E. Keogh, Mining massive archives of mice sounds with symbolized representations, in: SIGKDD, 2012, pp. 1-10.
    • (2012) SIGKDD , pp. 1-10
    • Zakaria, J.1    Rotschafer, S.2    Mueen, A.3    Razak, K.4    Keogh, E.5
  • 13
    • 33646807766 scopus 로고    scopus 로고
    • A survey of temporal data mining
    • S. Laxman, and P.S. Sastry A survey of temporal data mining Sadhana 31 2 2006 173 198
    • (2006) Sadhana , vol.31 , Issue.2 , pp. 173-198
    • Laxman, S.1    Sastry, P.S.2
  • 14
    • 79958694733 scopus 로고    scopus 로고
    • Clustering time series data stream - A literature survey
    • V. Kavitha, and M. Punithavalli Clustering time series data stream - a literature survey Int. J. Comput. Sci. Inf. Secur. 8 1 2010 arxiv:1005.4270
    • (2010) Int. J. Comput. Sci. Inf. Secur. , vol.8 , Issue.1
    • Kavitha, V.1    Punithavalli, M.2
  • 16
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data - A survey
    • T. Warrenliao Clustering of time series data - a survey Pattern Recognit. 38 11 2005 1857 1874
    • (2005) Pattern Recognit. , vol.38 , Issue.11 , pp. 1857-1874
    • Warrenliao, T.1
  • 17
    • 84897906299 scopus 로고    scopus 로고
    • Recent techniques of clustering of time series data: A survey
    • S. Rani, and G. Sikka Recent techniques of clustering of time series data: a survey Int. J. Comput. Appl 52 15 2012 1 9
    • (2012) Int. J. Comput. Appl , vol.52 , Issue.15 , pp. 1-9
    • Rani, S.1    Sikka, G.2
  • 19
    • 84930616935 scopus 로고    scopus 로고
    • Time series as a point - A novel approach for time series cluster visualization
    • R. Kumar, P. Nagabhushan, Time series as a point - a novel approach for time series cluster visualization in: Proceedings of the Conference on Data Mining, 2006, pp. 24-29.
    • (2006) Proceedings of the Conference on Data Mining , pp. 24-29
    • Kumar, R.1    Nagabhushan, P.2
  • 20
  • 21
    • 33749012790 scopus 로고    scopus 로고
    • Characteristic-based clustering for time series data
    • X. Wang, K. Smith, and R. Hyndman Characteristic-based clustering for time series data Data Min. Knowl. Discov. 13 3 2006 335 364
    • (2006) Data Min. Knowl. Discov. , vol.13 , Issue.3 , pp. 335-364
    • Wang, X.1    Smith, K.2    Hyndman, R.3
  • 22
    • 65549160361 scopus 로고    scopus 로고
    • Clustering time series data: An evolutionary approach
    • M. Chiş, S. Banerjee, and A.E. Hassanien Clustering time series data: an evolutionary approach Found. Comput. Intell. 6 1 2009 193 207
    • (2009) Found. Comput. Intell. , vol.6 , Issue.1 , pp. 193-207
    • Chiş, M.1    Banerjee, S.2    Hassanien, A.E.3
  • 24
    • 84942742938 scopus 로고    scopus 로고
    • A simple dimensionality reduction technique for fast similarity search in large time series databases
    • E. Keogh, M. Pazzani, K. Chakrabarti, and S. Mehrotra A simple dimensionality reduction technique for fast similarity search in large time series databases Knowl. Inf. Syst. 1805 1 2000 122 133
    • (2000) Knowl. Inf. Syst. , vol.1805 , Issue.1 , pp. 122-133
    • Keogh, E.1    Pazzani, M.2    Chakrabarti, K.3    Mehrotra, S.4
  • 26
    • 33845236924 scopus 로고    scopus 로고
    • Unsupervised feature extraction for time series clustering using orthogonal wavelet transform
    • H. Zhang, T.B. Ho, Y. Zhang, and M.S. Lin Unsupervised feature extraction for time series clustering using orthogonal wavelet transform Informatica 30 3 2006 305 319
    • (2006) Informatica , vol.30 , Issue.3 , pp. 305-319
    • Zhang, H.1    Ho, T.B.2    Zhang, Y.3    Lin, M.S.4
  • 31
    • 0141463039 scopus 로고    scopus 로고
    • Finding surprising patterns in a time series database in linear time and space
    • E. Keogh, S. Lonardi, B.Y. Chiu, Finding surprising patterns in a time series database in linear time and space, in: Proceedings of the Eighth ACM SIGKDD, 2002, pp. 550-556.
    • (2002) Proceedings of the Eighth ACM SIGKDD , pp. 550-556
    • Keogh, E.1    Lonardi, S.2    Chiu, B.Y.3
  • 36
    • 84860534755 scopus 로고    scopus 로고
    • A new method for abrupt dynamic change detection of correlated time series
    • W. He, G. Feng, Q. Wu, T. He, S. Wan, and J. Chou A new method for abrupt dynamic change detection of correlated time series, Int. J. Climatol. 32 10 2011 1604 1614
    • (2011) Int. J. Climatol. , vol.32 , Issue.10 , pp. 1604-1614
    • He, W.1    Feng, G.2    Wu, Q.3    He, T.4    Wan, S.5    Chou, J.6
  • 37
    • 2442474088 scopus 로고    scopus 로고
    • Time series forecasting with a hybrid clustering scheme and pattern recognition
    • A. Sfetsos, and C. Siriopoulos Time series forecasting with a hybrid clustering scheme and pattern recognition IEEE Trans. Syst. Man Cybern 34 3 2004 399 405
    • (2004) IEEE Trans. Syst. Man Cybern , vol.34 , Issue.3 , pp. 399-405
    • Sfetsos, A.1    Siriopoulos, C.2
  • 38
    • 70349334936 scopus 로고    scopus 로고
    • Financial forecasting through unsupervised clustering and neural networks
    • N. Pavlidis, V.P. Plagianakos, D.K. Tasoulis, and M.N. Vrahatis Financial forecasting through unsupervised clustering and neural networks Oper. Res. 6 2 2006 103 127
    • (2006) Oper. Res. , vol.6 , Issue.2 , pp. 103-127
    • Pavlidis, N.1    Plagianakos, V.P.2    Tasoulis, D.K.3    Vrahatis, M.N.4
  • 42
    • 77956516272 scopus 로고    scopus 로고
    • Multiple gene expression profile alignment for microarray time-series data clustering
    • N. Subhani, L. Rueda, A. Ngom, and C.J. Burden Multiple gene expression profile alignment for microarray time-series data clustering Bioinformatics 26 18 2010 2281 2288
    • (2010) Bioinformatics , vol.26 , Issue.18 , pp. 2281-2288
    • Subhani, N.1    Rueda, L.2    Ngom, A.3    Burden, C.J.4
  • 45
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data
    • 21
    • J. Ernst, G.J. Nau, and Z. Bar-Joseph Clustering short time series gene expression data Bioinforma. 21 Suppl. 1 2005 i159 i168 21
    • (2005) Bioinforma. , vol.21 , pp. i159-i168
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 46
    • 84897521088 scopus 로고    scopus 로고
    • Clustering gene expression regulators: New approach to disease subtyping
    • Mikhail Pyatnitskiy, I. Mazo, M. Shkrob, E. Schwartz, and E. Kotelnikova Clustering gene expression regulators: new approach to disease subtyping PLoS One 9 1 2014 e84955
    • (2014) PLoS One , vol.9 , Issue.1 , pp. e84955
    • Pyatnitskiy, M.1    Mazo, I.2    Shkrob, M.3    Schwartz, E.4    Kotelnikova, E.5
  • 48
    • 84877276770 scopus 로고    scopus 로고
    • A dynamic fuzzy cluster algorithm for time series
    • M. Ji, F. Xie, and Y. Ping A dynamic fuzzy cluster algorithm for time series Abstr. Appl. Anal. 2013 2013 1 7
    • (2013) Abstr. Appl. Anal. , vol.2013 , pp. 1-7
    • Ji, M.1    Xie, F.2    Ping, Y.3
  • 49
    • 84901006073 scopus 로고    scopus 로고
    • Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering
    • M.A. Elangasinghe, N. Singhal, K.N. Dirks, J.A. Salmond, and S. Samarasinghe Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modelling and k-means clustering Atmos. Environ. 94 2014 106 116
    • (2014) Atmos. Environ. , vol.94 , pp. 106-116
    • Elangasinghe, M.A.1    Singhal, N.2    Dirks, K.N.3    Salmond, J.A.4    Samarasinghe, S.5
  • 50
    • 0002182408 scopus 로고
    • Cross-sectional approach for clustering time varying data
    • K. Košmelj, and V. Batagelj Cross-sectional approach for clustering time varying data J. Classif 7 1 1990
    • (1990) J. Classif , vol.7 , Issue.1
    • Košmelj, K.1    Batagelj, V.2
  • 51
    • 84874720586 scopus 로고    scopus 로고
    • Analysis of similarity measures in times series clustering for the discovery of building energy patterns
    • F. Iglesias, and W. Kastner Analysis of similarity measures in times series clustering for the discovery of building energy patterns Energies 6 2 2013 579 597
    • (2013) Energies , vol.6 , Issue.2 , pp. 579-597
    • Iglesias, F.1    Kastner, W.2
  • 53
    • 0037905617 scopus 로고    scopus 로고
    • Time-frequency clustering and discriminant analysis
    • R.H.R. Shumway Time-frequency clustering and discriminant analysis Stat. Probab. Lett 63 3 2003 307 314
    • (2003) Stat. Probab. Lett , vol.63 , Issue.3 , pp. 307-314
    • Shumway, R.H.R.1
  • 54
    • 84888351444 scopus 로고    scopus 로고
    • Polarization of forecast densities: A new approach to time series classification
    • Shen Liu, E.A. Maharaj, and B. Inder Polarization of forecast densities: a new approach to time series classification Comput. Stat. Data Anal. 70 2014 345 361
    • (2014) Comput. Stat. Data Anal. , vol.70 , pp. 345-361
    • Liu, S.1    Maharaj, E.A.2    Inder, B.3
  • 55
    • 84895733474 scopus 로고    scopus 로고
    • Exploratory analysis of time series data: Detection of partial similarities, clustering, and visualization
    • Y. Sadahiro, and T. Kobayashi Exploratory analysis of time series data: detection of partial similarities, clustering, and visualization Comput. Environ. Urban Syst. 45 2014 24 33
    • (2014) Comput. Environ. Urban Syst. , vol.45 , pp. 24-33
    • Sadahiro, Y.1    Kobayashi, T.2
  • 57
    • 0242625246 scopus 로고    scopus 로고
    • Clustering seasonality patterns in the presence of errors
    • M. Kumar, N.R. Patel, Clustering seasonality patterns in the presence of errors, in: Proceedings of Eighth ACM SIGKDD, 2002, pp. 557-563.
    • (2002) Proceedings of Eighth ACM SIGKDD , pp. 557-563
    • Kumar, M.1    Patel, N.R.2
  • 62
    • 84888335409 scopus 로고    scopus 로고
    • Stock market co-movement assessment using a three-phase clustering method
    • S. Aghabozorgi, and T. Ying Wah Stock market co-movement assessment using a three-phase clustering method Expert Syst. Appl. 41 4 2014 1301 1314
    • (2014) Expert Syst. Appl. , vol.41 , Issue.4 , pp. 1301-1314
    • Aghabozorgi, S.1    Wah, T.Y.2
  • 63
    • 84899716401 scopus 로고    scopus 로고
    • A clustering time series model for the optimal hedge ratio decision making
    • Y.-C. Hsu, and A.-P. Chen A clustering time series model for the optimal hedge ratio decision making Neurocomputing 138 2014 358 370
    • (2014) Neurocomputing , vol.138 , pp. 358-370
    • Hsu, Y.-C.1    Chen, A.-P.2
  • 65
    • 44349149239 scopus 로고    scopus 로고
    • Normalized cut group clustering of resting-state fMRI data
    • M. van den Heuvel, R. Mandl, Pol, and H. Hulshoff Normalized cut group clustering of resting-state fMRI data PLoS One 3 4 2008 e2001
    • (2008) PLoS One , vol.3 , Issue.4 , pp. e2001
    • Van Den Heuvel, M.1    Mandl, R.2    Pol3    Hulshoff, H.4
  • 66
    • 84860638565 scopus 로고    scopus 로고
    • A time series approach for clustering mass spectrometry data
    • 2010
    • F. Gullo, G. Ponti, A. Tagarelli, G. Tradigo, and P. Veltri A time series approach for clustering mass spectrometry data J. Comput. Sci. 3 5 2011 344 355 2010
    • (2011) J. Comput. Sci. , vol.3 , Issue.5 , pp. 344-355
    • Gullo, F.1    Ponti, G.2    Tagarelli, A.3    Tradigo, G.4    Veltri, P.5
  • 70
    • 79955625591 scopus 로고    scopus 로고
    • Fuzzy c-means clustering-based speaker verification
    • D. Tran, and M. Wagner Fuzzy c-means clustering-based speaker verification Adv. Soft Comput. 2002 2275 2002 363 369
    • (2002) Adv. Soft Comput. 2002 , vol.2275 , pp. 363-369
    • Tran, D.1    Wagner, M.2
  • 71
    • 84861065520 scopus 로고    scopus 로고
    • Using hierarchical time series clustering algorithm and wavelet classifier for biometric voice classification
    • Fong, and Simon Using hierarchical time series clustering algorithm and wavelet classifier for biometric voice classification J. Biomed. Biotechnol. 2012 215019
    • (2012) J. Biomed. Biotechnol. , pp. 215019
    • Fong1    Simon2
  • 72
    • 84900840461 scopus 로고    scopus 로고
    • Social network users clustering based on multivariate time series of emotional behavior
    • J. Zhu, B. Wang, and B. Wu Social network users clustering based on multivariate time series of emotional behavior J. China Univ. Posts Telecommun 21 2 2014 21 31
    • (2014) J. China Univ. Posts Telecommun , vol.21 , Issue.2 , pp. 21-31
    • Zhu, J.1    Wang, B.2    Wu, B.3
  • 73
    • 21844471761 scopus 로고    scopus 로고
    • Clustering of time-series subsequences is meaningless: Implications for previous and future research
    • E. Keogh, and J. Lin Clustering of time-series subsequences is meaningless: implications for previous and future research Knowl. Inf. Syst. 8 2 2005 154 177
    • (2005) Knowl. Inf. Syst. , vol.8 , Issue.2 , pp. 154-177
    • Keogh, E.1    Lin, J.2
  • 76
    • 85013566475 scopus 로고    scopus 로고
    • Extracting interpretable muscle activation patterns with time series knowledge mining
    • F. Morchen, A. Ultsch, F. Mörchen, and O. Hoos Extracting interpretable muscle activation patterns with time series knowledge mining J. Knowl. BASED 9 3 2005 197 208
    • (2005) J. Knowl. BASED , vol.9 , Issue.3 , pp. 197-208
    • Morchen, F.1    Ultsch, A.2    Mörchen, F.3    Hoos, O.4
  • 78
    • 26944436839 scopus 로고    scopus 로고
    • Indexing time-series under conditions of noise
    • M. Last, A. Kandel, H. Bunke, World Scientific Singapore
    • M. Vlachos, D. Gunopulos, and G. Das "Indexing time-series under conditions of noise," M. Last, A. Kandel, H. Bunke, Data Mining in Time Series Databases 2004 World Scientific Singapore 67
    • (2004) Data Mining in Time Series Databases , pp. 67
    • Vlachos, M.1    Gunopulos, D.2    Das, G.3
  • 79
    • 79954516169 scopus 로고    scopus 로고
    • Chapman & Hall/CRC Taylor and Francis Group Boca Raton, FL
    • T. Mitsa Temporal Data Mining vol. 33 2009 Chapman & Hall/CRC Taylor and Francis Group Boca Raton, FL
    • (2009) Temporal Data Mining , vol.33
    • Mitsa, T.1
  • 81
    • 33644519378 scopus 로고    scopus 로고
    • Predicting volatility: Getting the most out of return data sampled at different frequencies
    • E. Ghysels, P. Santa-Clara, and R. Valkanov Predicting volatility: getting the most out of return data sampled at different frequencies J. Econom 131 1-2 2006 59 95
    • (2006) J. Econom , vol.131 , Issue.1-2 , pp. 59-95
    • Ghysels, E.1    Santa-Clara, P.2    Valkanov, R.3
  • 84
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A novel symbolic representation of time series"
    • J. Lin, E. Keogh, L. Wei, and S. Lonardi Experiencing SAX: a novel symbolic representation of time series" Data Min. Knowl. Discov. 15 2 2007 107 144
    • (2007) Data Min. Knowl. Discov. , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 87
    • 0034832364 scopus 로고    scopus 로고
    • Locally adaptive dimensionality reduction for indexing large time series databases
    • E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra Locally adaptive dimensionality reduction for indexing large time series databases, ACM SIGMOD Rec 27 2 2001 151 162
    • (2001) ACM SIGMOD Rec , vol.27 , Issue.2 , pp. 151-162
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 91
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh Querying and mining of time series data: experimental comparison of representations and distance measures, Proc. VLDB Endow 1 2 2008 1542 1552
    • (2008) Proc. VLDB Endow , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 93
    • 67649557401 scopus 로고    scopus 로고
    • ISAX: Disk-aware mining and indexing of massive time series datasets
    • J. Shieh, and E. Keogh iSAX: disk-aware mining and indexing of massive time series datasets Data Min. Knowl. Discov. 19 1 2009 24 57
    • (2009) Data Min. Knowl. Discov. , vol.19 , Issue.1 , pp. 24-57
    • Shieh, J.1    Keogh, E.2
  • 94
    • 84872381144 scopus 로고    scopus 로고
    • Experimental comparison of representation methods and distance measures for time series data
    • p. Springer Netherlands
    • X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh Experimental comparison of representation methods and distance measures for time series data Data Min. Knowl. Discov. 2012 p. Springer Netherlands
    • (2012) Data Min. Knowl. Discov.
    • Wang, X.1    Mueen, A.2    Ding, H.3    Trajcevski, G.4    Scheuermann, P.5    Keogh, E.6
  • 97
    • 0031166708 scopus 로고    scopus 로고
    • Efficiently supporting ad hoc queries in large datasets of time sequences
    • F. Korn, H.V. Jagadish, and C. Faloutsos Efficiently supporting ad hoc queries in large datasets of time sequences ACM SIGMOD Record 26 1997 289 300
    • (1997) ACM SIGMOD Record , vol.26 , pp. 289-300
    • Korn, F.1    Jagadish, H.V.2    Faloutsos, C.3
  • 98
  • 99
    • 3142777878 scopus 로고    scopus 로고
    • Indexing spatio-temporal trajectories with Chebyshev polynomials
    • Y. Cai and R. Ng, Indexing spatio-temporal trajectories with Chebyshev polynomials, in: Procedings of 2004 ACM SIGMOD International, 2004, p. 599.
    • (2004) Procedings of 2004 ACM SIGMOD International , pp. 599
    • Cai, Y.1    Ng, R.2
  • 103
    • 36348977475 scopus 로고    scopus 로고
    • Discovering multivariate motifs using subsequence density estimation and greedy mixture learning
    • D. Minnen, C.L. Isbell, I. Essa, and T. Starner Discovering multivariate motifs using subsequence density estimation and greedy mixture learning Proc. Natl. Conf. Artif. Intell. 22 1 2007 615
    • (2007) Proc. Natl. Conf. Artif. Intell. , vol.22 , Issue.1 , pp. 615
    • Minnen, D.1    Isbell, C.L.2    Essa, I.3    Starner, T.4
  • 104
    • 23044532511 scopus 로고    scopus 로고
    • A Hidden Markov Model-based approach to sequential data clustering
    • T. Caelli, A. Amin, R. Duin, R. De, and M. Kamel, Eds.
    • A. Panuccio, M. Bicego, and V. Murino, A Hidden Markov Model-based approach to sequential data clustering, in Structural, Syntactic, and Statistical Pattern Recognition, T. Caelli, A. Amin, R. Duin, R. De, and M. Kamel, Eds. 2002.
    • (2002) Structural, Syntactic, and Statistical Pattern Recognition
    • Panuccio, A.1    Bicego, M.2    Murino, V.3
  • 105
    • 84880090937 scopus 로고    scopus 로고
    • Time-series bitmaps: A practical visualization tool for working with large time series databases
    • N. Kumar, N. Lolla, E. Keogh, and S. Lonardi Time-series bitmaps: a practical visualization tool for working with large time series databases SIAM 2005 Data Min 2005 531 535
    • (2005) SIAM 2005 Data Min , pp. 531-535
    • Kumar, N.1    Lolla, N.2    Keogh, E.3    Lonardi, S.4
  • 106
    • 35748959377 scopus 로고    scopus 로고
    • Time series clustering and classification by the autoregressive metric
    • M. Corduas, and D. Piccolo Time series clustering and classification by the autoregressive metric Comput. Stat. Data Anal. 52 4 2008 1860 1872
    • (2008) Comput. Stat. Data Anal. , vol.52 , Issue.4 , pp. 1860-1872
    • Corduas, M.1    Piccolo, D.2
  • 112
    • 15544384126 scopus 로고    scopus 로고
    • Clustering time series with clipped data
    • A.J. Bagnall, and G. Janacek Clustering time series with clipped data Mach. Learn. 58 2 2005 151 178
    • (2005) Mach. Learn. , vol.58 , Issue.2 , pp. 151-178
    • Bagnall, A.J.1    Janacek, G.2
  • 113
    • 1842530903 scopus 로고    scopus 로고
    • Incremental, online, and merge mining of partial periodic patterns in time-series databases
    • W.G. Aref, M.G. Elfeky, and A.K. Elmagarmid Incremental, online, and merge mining of partial periodic patterns in time-series databases Trans. Knowl. Data Eng 16 3 2004 332 342
    • (2004) Trans. Knowl. Data Eng , vol.16 , Issue.3 , pp. 332-342
    • Aref, W.G.1    Elfeky, M.G.2    Elmagarmid, A.K.3
  • 116
    • 84898995769 scopus 로고    scopus 로고
    • Clustering sequences with hidden Markov models
    • P. Smyth Clustering sequences with hidden Markov models, Adv. Neural Inf. Process. Syst 9 1997 648 654
    • (1997) Adv. Neural Inf. Process. Syst , vol.9 , pp. 648-654
    • Smyth, P.1
  • 117
    • 2642545237 scopus 로고    scopus 로고
    • Mixtures of ARMA models for model-based time series clustering
    • Y. Xiong, and D.Y. Yeung Mixtures of ARMA models for model-based time series clustering Data Min, 2002. ICDM 2003 2002 717 720
    • (2002) Data Min, 2002. ICDM , vol.2003 , pp. 717-720
    • Xiong, Y.1    Yeung, D.Y.2
  • 119
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • H. Sakoe, and S. Chiba Dynamic programming algorithm optimization for spoken word recognition, IEEE Trans. Acoust. Speech Signal Process 26 1 1978 43 49
    • (1978) IEEE Trans. Acoust. Speech Signal Process , vol.26 , Issue.1 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 124
    • 84952503562 scopus 로고
    • Thirteen ways to look at the correlation coefficient
    • J.L. Rodgers, and W.A. Nicewander Thirteen ways to look at the correlation coefficient, Am. Stat 42 1 1988 59 66
    • (1988) Am. Stat , vol.42 , Issue.1 , pp. 59-66
    • Rodgers, J.L.1    Nicewander, W.A.2
  • 127
    • 80055004213 scopus 로고    scopus 로고
    • Data mining in time series databases
    • M. Last, and A. Kandel Data mining in time series databases World Sci. 2004
    • (2004) World Sci.
    • Last, M.1    Kandel, A.2
  • 129
    • 0034954376 scopus 로고    scopus 로고
    • Aligning gene expression time series with time warping algorithms
    • J. Aach, and G.M. Church Aligning gene expression time series with time warping algorithms Bioinformatics 17 6 2001 495
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 495
    • Aach, J.1    Church, G.M.2
  • 130
    • 0030095346 scopus 로고    scopus 로고
    • On the Kullback-Leibler information divergence of locally stationary processes
    • R. Dahlhaus On the Kullback-Leibler information divergence of locally stationary processes Stoch. Process. Appl 62 1 1996 139 168
    • (1996) Stoch. Process. Appl , vol.62 , Issue.1 , pp. 139-168
    • Dahlhaus, R.1
  • 133
    • 53949085995 scopus 로고    scopus 로고
    • Supporting content-based searches on time series via approximation
    • C. Wang, and X. Sean Wang Supporting content-based searches on time series via approximation, Sci Stat Database 2000 69 81
    • (2000) Sci Stat Database , pp. 69-81
    • Wang, C.1    Wang, X.S.2
  • 136
    • 84883211513 scopus 로고    scopus 로고
    • Using multi-scale histograms to answer pattern existence and shape match queries
    • L. Chen, and M.T. Özsu Using multi-scale histograms to answer pattern existence and shape match queries, Time 2 1 2005 217 226
    • (2005) Time , vol.2 , Issue.1 , pp. 217-226
    • Chen, L.1    Özsu, M.T.2
  • 141
    • 78649487981 scopus 로고    scopus 로고
    • A notime series classificationvel pattern extraction method for
    • X. Zhang, J. Wu, X. Yang, H. Ou, and T. Lv A notime series classificationvel pattern extraction method for Optim. Eng. 10 2 2009 253 271
    • (2009) Optim. Eng. , vol.10 , Issue.2 , pp. 253-271
    • Zhang, X.1    Wu, J.2    Yang, X.3    Ou, H.4    Lv, T.5
  • 142
    • 77956999479 scopus 로고    scopus 로고
    • Dictionary-based compression for long time-series similarity
    • W. Lang, M. Morse, and J.M. Patel Dictionary-based compression for long time-series similarity Knowl. Data Eng. IEEE Trans 22 11 2010 1609 1622
    • (2010) Knowl. Data Eng. IEEE Trans , vol.22 , Issue.11 , pp. 1609-1622
    • Lang, W.1    Morse, M.2    Patel, J.M.3
  • 143
    • 41749090269 scopus 로고    scopus 로고
    • Toward accurate dynamic time warping in linear time and space
    • S. Salvador, and P. Chan Toward accurate dynamic time warping in linear time and space Intell. Data Anal. 11 5 2007 561 580
    • (2007) Intell. Data Anal. , vol.11 , Issue.5 , pp. 561-580
    • Salvador, S.1    Chan, P.2
  • 144
    • 0016467604 scopus 로고
    • Minimum prediction residual principle applied to speech recognition. Minimum prediction residual principle applied to speech recognition
    • F. Itakura Minimum prediction residual principle applied to speech recognition. Minimum prediction residual principle applied to speech recognition IEEE Trans. Acoust. Speech Signal Process 23 1 1975 67 72
    • (1975) IEEE Trans. Acoust. Speech Signal Process , vol.23 , Issue.1 , pp. 67-72
    • Itakura, F.1
  • 147
    • 0018656519 scopus 로고
    • Speaker-independent recognition of isolated words using clustering techniques
    • L. Rabiner, and S. Levinson Speaker-independent recognition of isolated words using clustering techniques, IEEE Trans. Acoust. Speech Signal Process 27 4 1979 336 349
    • (1979) IEEE Trans. Acoust. Speech Signal Process , vol.27 , Issue.4 , pp. 336-349
    • Rabiner, L.1    Levinson, S.2
  • 149
    • 37249046121 scopus 로고    scopus 로고
    • Inaccuracies of shape averaging method using dynamic time warping for time series data
    • V. Niennattrakul, and C. Ratanamahatana Inaccuracies of shape averaging method using dynamic time warping for time series data Comput. Sci. 2007 2007 513 520
    • (2007) Comput. Sci. 2007 , pp. 513-520
    • Niennattrakul, V.1    Ratanamahatana, C.2
  • 151
    • 33751567248 scopus 로고    scopus 로고
    • A comparison of techniques for automatic clustering of handwritten characters
    • V. Vuori, and J. Laaksonen A comparison of techniques for automatic clustering of handwritten characters Pattern Recognit., 2002 3 2002 30168
    • (2002) Pattern Recognit., 2002 , vol.3 , pp. 30168
    • Vuori, V.1    Laaksonen, J.2
  • 153
    • 33745000979 scopus 로고    scopus 로고
    • An adaptive genetic clustering method for exploratory mining of feature vector and time series data
    • T.W. Liao, and C.F. Ting An adaptive genetic clustering method for exploratory mining of feature vector and time series data, Int. J. Prod. Res. 44 14 2006 2731 2748
    • (2006) Int. J. Prod. Res. , vol.44 , Issue.14 , pp. 2731-2748
    • Liao, T.W.1    Ting, C.F.2
  • 154
    • 0030130811 scopus 로고    scopus 로고
    • Nonlinear alignment and averaging for estimating the evoked potential
    • L. Gupta, D.L. Molfese, R. Tammana, and P.G. Simos Nonlinear alignment and averaging for estimating the evoked potential IEEE Trans. Biomed. Eng. 43 4 1996 348 356
    • (1996) IEEE Trans. Biomed. Eng. , vol.43 , Issue.4 , pp. 348-356
    • Gupta, L.1    Molfese, D.L.2    Tammana, R.3    Simos, P.G.4
  • 156
    • 2642567171 scopus 로고    scopus 로고
    • Using dynamic time warping to bootstrap HMM-based clustering of time series
    • T. Oates, L. Firoiu, and P. Cohen Using dynamic time warping to bootstrap HMM-based clustering of time series Seq. Learn. Paradig. ALGORITHMS, Appl 1 1828 2001 35 52
    • (2001) Seq. Learn. Paradig. ALGORITHMS, Appl , vol.1 , Issue.1828 , pp. 35-52
    • Oates, T.1    Firoiu, L.2    Cohen, P.3
  • 158
    • 78649324794 scopus 로고    scopus 로고
    • A global averaging method for dynamic time warping, with applications to clustering
    • F. Petitjean, A. Ketterlin, and P. Gançarski A global averaging method for dynamic time warping, with applications to clustering Pattern Recognit 44 3 2011 678 693
    • (2011) Pattern Recognit , vol.44 , Issue.3 , pp. 678-693
    • Petitjean, F.1    Ketterlin, A.2    Gançarski, P.3
  • 161
    • 84862906604 scopus 로고    scopus 로고
    • Incremental clustering of time-series by fuzzy clustering
    • S. Aghabozorgi, M.R. Saybani, and T.Y. Wah Incremental clustering of time-series by fuzzy clustering J. Inf. Sci. Eng. 28 4 2012 671 688
    • (2012) J. Inf. Sci. Eng. , vol.28 , Issue.4 , pp. 671-688
    • Aghabozorgi, S.1    Saybani, M.R.2    Wah, T.Y.3
  • 162
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, E.H. Han, and V. Kumar Chameleon: hierarchical clustering using dynamic modeling Comput. (Long. Beach. Calif). 32 8 1999 68 75
    • (1999) Comput. (Long. Beach. Calif). , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.H.2    Kumar, V.3
  • 163
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim CURE: an efficient clustering algorithm for large databases, ACM SIGMOD Rec. 27 2 1998 73 84
    • (1998) ACM SIGMOD Rec. , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 164
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny BIRCH: an efficient data clustering method for very large databases ACM SIGMOD Rec. 25 2 1996 103 114
    • (1996) ACM SIGMOD Rec. , vol.25 , Issue.2 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 165
    • 15344341533 scopus 로고    scopus 로고
    • A wavelet-based anytime algorithm for k-means clustering of time series
    • M. Vlachos, J. Lin, and E. Keogh A wavelet-based anytime algorithm for k-means clustering of time series Proc. Work. Clust 2003 23 30
    • (2003) Proc. Work. Clust , pp. 23-30
    • Vlachos, M.1    Lin, J.2    Keogh, E.3
  • 168
    • 26844542547 scopus 로고    scopus 로고
    • Empirical comparison of clustering methods for long time-series databases
    • S. Hirano, and S. Tsumoto Empirical comparison of clustering methods for long time-series databases Act. Min 3430 2005 268 286
    • (2005) Act. Min , vol.3430 , pp. 268-286
    • Hirano, S.1    Tsumoto, S.2
  • 173
    • 33646933601 scopus 로고    scopus 로고
    • Online clustering of parallel data streams
    • Aug
    • J. Beringer, and E. Hullermeier Online clustering of parallel data streams Data Knowl. Eng. 58 2 2006 180 204 Aug
    • (2006) Data Knowl. Eng. , vol.58 , Issue.2 , pp. 180-204
    • Beringer, J.1    Hullermeier, E.2
  • 175
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • J.C. Dunn A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters Cybern. Syst. 3 3 1973 32 57
    • (1973) Cybern. Syst. , vol.3 , Issue.3 , pp. 32-57
    • Dunn, J.C.1
  • 176
    • 0035416012 scopus 로고    scopus 로고
    • Low-complexity fuzzy relational clustering algorithms for web mining
    • R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi "Low-complexity fuzzy relational clustering algorithms for web mining," Fuzzy Syst. IEEE Trans vol. 9 no. 4 2001 595 607
    • (2001) Fuzzy Syst. IEEE Trans , vol.9 , Issue.4 , pp. 595-607
    • Krishnapuram, R.1    Joshi, A.2    Nasraoui, O.3    Yi, L.4
  • 177
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy C-means method for clustering microarray data
    • D. Dembélé, and P. Kastner Fuzzy C-means method for clustering microarray data Bioinformatics 19 8 2003 973 980
    • (2003) Bioinformatics , vol.19 , Issue.8 , pp. 973-980
    • Dembélé, D.1    Kastner, P.2
  • 180
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D.H. Fisher Knowledge acquisition via incremental conceptual clustering Mach. Learn. 2 2 1987 139 172
    • (1987) Mach. Learn. , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 181
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • G.A. Carpenter, and S. Grossberg A massively parallel architecture for a self-organizing neural pattern recognition machine Comput. vision, Graph. image Process 37 1 1987 54 115
    • (1987) Comput. Vision, Graph. Image Process , vol.37 , Issue.1 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 182
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen The self-organizing map Proc. IEEE 78 9 1990 1464 1480
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 183
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • C. Biernacki, G. Celeux, and G. Govaert Assessing a mixture model for clustering with the integrated completed likelihood IEEE Trans. Pattern Anal. Mach. Intell 22 7 2000 719 725
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 186
    • 65549104397 scopus 로고    scopus 로고
    • A roadmap of clustering algorithms: Finding a match for a biomedical application
    • B. Andreopoulos, A. An, and X. Wang, A roadmap of clustering algorithms: finding a match for a biomedical application Brief. Bioinform. 10 3 2009 297 314
    • (2009) Brief. Bioinform. , vol.10 , Issue.3 , pp. 297-314
    • Andreopoulos, B.1    An, A.2    Wang, X.3
  • 187
    • 45749146270 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.P. Kriegel, J. Sander, and X. Xu A density-based algorithm for discovering clusters in large spatial databases with noise In Kdd 96 34 1996, August 226 231
    • (1996) Kdd , vol.96 , Issue.34 , pp. 226-231
    • Ester, M.1    Kriegel, H.P.2    Sander, J.3    Xu, X.4
  • 188
    • 0347172110 scopus 로고    scopus 로고
    • OPTICS: Ordering points to identify the clustering structure
    • M. Ankerst, M. Breunig, and H. Kriegel OPTICS: Ordering points to identify the clustering structure ACM SIGMOD Rec 28 2 1999 40 60
    • (1999) ACM SIGMOD Rec , vol.28 , Issue.2 , pp. 40-60
    • Ankerst, M.1    Breunig, M.2    Kriegel, H.3
  • 192
    • 0032343819 scopus 로고    scopus 로고
    • Discrimination and clustering for multivariate time series
    • Y. Kakizawa, R.H. Shumway, and M. Taniguchi Discrimination and clustering for multivariate time series J. Am. Stat. Assoc 93 441 1998 328 340
    • (1998) J. Am. Stat. Assoc , vol.93 , Issue.441 , pp. 328-340
    • Kakizawa, Y.1    Shumway, R.H.2    Taniguchi, M.3
  • 193
    • 0033692592 scopus 로고    scopus 로고
    • Nonstationary time series analysis by temporal clustering
    • S. Policker, and A.B.B. Geva Nonstationary time series analysis by temporal clustering Syst. Man, Cybern. Part B 30 2 2000 339 343
    • (2000) Syst. Man, Cybern. Part B , vol.30 , Issue.2 , pp. 339-343
    • Policker, S.1    Geva, A.B.B.2
  • 194
    • 0035861975 scopus 로고    scopus 로고
    • Beyond synexpression relationships: Local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions1
    • J. Qian, M. Dolled-Filhart, J. Lin, H. Yu, and M. Gerstein Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions1 J. Mol. Biol. 314 5 2001 1053 1066
    • (2001) J. Mol. Biol. , vol.314 , Issue.5 , pp. 1053-1066
    • Qian, J.1    Dolled-Filhart, M.2    Lin, J.3    Yu, H.4    Gerstein, M.5
  • 195
    • 1842483334 scopus 로고    scopus 로고
    • Joint segmentation and classification of time series using class-specific features
    • Z.J. Wang, and P. Willett Joint segmentation and classification of time series using class-specific features Syst. Man, Cybern. Part B Cybern. IEEE Trans 34 2 2004 1056 1067
    • (2004) Syst. Man, Cybern. Part B Cybern. IEEE Trans , vol.34 , Issue.2 , pp. 1056-1067
    • Wang, Z.J.1    Willett, P.2
  • 196
    • 25144474901 scopus 로고    scopus 로고
    • Dimension reduction for clustering time series using global characteristics
    • X. Wang, K.A. Smith, and R.J. Hyndman Dimension reduction for clustering time series using global characteristics Comput. Sci. 2005 2005 792 795
    • (2005) Comput. Sci. 2005 , pp. 792-795
    • Wang, X.1    Smith, K.A.2    Hyndman, R.J.3
  • 199
    • 30344477625 scopus 로고    scopus 로고
    • Efficiently mining gene expression data via a novel parameterless clustering method
    • V.S. Tseng, and C.P. Kao Efficiently mining gene expression data via a novel parameterless clustering method, IEEE/ACM Trans. Comput. Biol. Bioinforma 2 4 2005 355 365
    • (2005) IEEE/ACM Trans. Comput. Biol. Bioinforma , vol.2 , Issue.4 , pp. 355-365
    • Tseng, V.S.1    Kao, C.P.2
  • 201
    • 45849102089 scopus 로고    scopus 로고
    • A generalized model for financial time series representation and prediction
    • D. Bao A generalized model for financial time series representation and prediction, Appl. Intell. 29 1 2007 1 11
    • (2007) Appl. Intell. , vol.29 , Issue.1 , pp. 1-11
    • Bao, D.1
  • 202
    • 34248566914 scopus 로고    scopus 로고
    • Intelligent stock trading system by turning point confirming and probabilistic reasoning
    • D. Bao, and Z. Yang Intelligent stock trading system by turning point confirming and probabilistic reasoning Exp. Syst. Appl. 34 1 2008 620 627
    • (2008) Exp. Syst. Appl. , vol.34 , Issue.1 , pp. 620-627
    • Bao, D.1    Yang, Z.2
  • 205
    • 80051606484 scopus 로고    scopus 로고
    • A novel two-level clustering method for time series data analysis
    • C.-P.P. Lai, P.-C.C. Chung, and V.S. Tseng A novel two-level clustering method for time series data analysis, Expert Syst. Appl. 37 9 2010 6319 6326
    • (2010) Expert Syst. Appl. , vol.37 , Issue.9 , pp. 6319-6326
    • Lai, C.-P.P.1    Chung, P.-C.C.2    Tseng, V.S.3
  • 206
    • 79955630000 scopus 로고    scopus 로고
    • A novel clustering method on time series data
    • X. Zhang, J. Liu, Y. Du, and T. Lv A novel clustering method on time series data Expert Syst. Appl. 38 9 2011 11891 11900
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 11891-11900
    • Zhang, X.1    Liu, J.2    Du, Y.3    Lv, T.4
  • 208
    • 84875644445 scopus 로고    scopus 로고
    • Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm
    • R. Darkins, E.J. Cooke, Z. Ghahramani, P.D.W. Kirk, D.L. Wild, and R.S. Savage Accelerating Bayesian hierarchical clustering of time series data with a randomised algorithm PLoS One 8 4 2013 e59795
    • (2013) PLoS One , vol.8 , Issue.4 , pp. e59795
    • Darkins, R.1    Cooke, E.J.2    Ghahramani, Z.3    Kirk, P.D.W.4    Wild, D.L.5    Savage, R.S.6
  • 209
    • 84890504998 scopus 로고    scopus 로고
    • Mathematical programming formulations and algorithms for discrete k-median clustering of time-series data
    • O. Seref, Y.-J. Fan, and W.A. Chaovalitwongse Mathematical programming formulations and algorithms for discrete k-median clustering of time-series data INFORMS J. Comput. 26 1 2014 160 172
    • (2014) INFORMS J. Comput. , vol.26 , Issue.1 , pp. 160-172
    • Seref, O.1    Fan, Y.-J.2    Chaovalitwongse, W.A.3
  • 210
  • 211
    • 84899535969 scopus 로고    scopus 로고
    • A hybrid algorithm for clustering of time series data based on affinity search technique
    • S. Aghabozorgi, T. Ying Wah, T. Herawan, H.A. Jalab, M.A. Shaygan, and A. Jalali A hybrid algorithm for clustering of time series data based on affinity search technique Sci.World J. 2014 2014 562194
    • (2014) Sci.World J. , vol.2014 , pp. 562194
    • Aghabozorgi, S.1    Ying Wah, T.2    Herawan, T.3    Jalab, H.A.4    Shaygan, M.A.5    Jalali, A.6
  • 213
    • 26944501204 scopus 로고    scopus 로고
    • A MPAA-based iterative clustering algorithm augmented by nearest neighbors search for time-series data streams
    • J. Lin, M. Vlachos, E. Keogh, D. Gunopulos, J. Liu, S. Yu, and J. Le A MPAA-based iterative clustering algorithm augmented by nearest neighbors search for time-series data streams Adv. Knowl. Discov. Data Min 2005 333 342
    • (2005) Adv. Knowl. Discov. Data Min , pp. 333-342
    • Lin, J.1    Vlachos, M.2    Keogh, E.3    Gunopulos, D.4    Liu, J.5    Yu, S.6    Le, J.7
  • 214
    • 0037410621 scopus 로고    scopus 로고
    • Visual cluster validity for prototype generator clustering models
    • R.J. Hathaway, and J.C. Bezdek Visual cluster validity for prototype generator clustering models Pattern Recognit. Lett 24 9-10 2003 1563 1569
    • (2003) Pattern Recognit. Lett , vol.24 , Issue.9-10 , pp. 1563-1569
    • Hathaway, R.J.1    Bezdek, J.C.2
  • 217
    • 67650932694 scopus 로고    scopus 로고
    • A comparison of extrinsic clustering evaluation metrics based on formal constraints
    • E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo A comparison of extrinsic clustering evaluation metrics based on formal constraints Inf. Retr. Boston 12 4 2009 461 486
    • (2009) Inf. Retr. Boston , vol.12 , Issue.4 , pp. 461-486
    • Amigó, E.1    Gonzalo, J.2    Artiles, J.3    Verdejo, F.4
  • 222
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Y. Zhao, and G. Karypis Empirical and theoretical comparisons of selected criterion functions for document clustering, Mach. Learn. 55 3 2004 311 331
    • (2004) Mach. Learn. , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2
  • 223
    • 2642570831 scopus 로고    scopus 로고
    • Time series clustering with ARMA mixtures
    • Y. Xiong, and D.Y. Yeung Time series clustering with ARMA mixtures, Pattern Recognit 37 8 2004 1675 1689
    • (2004) Pattern Recognit , vol.37 , Issue.8 , pp. 1675-1689
    • Xiong, Y.1    Yeung, D.Y.2
  • 224
    • 84945923591 scopus 로고
    • A method for comparing two hierarchical clusterings
    • E. Fowlkes, and C.L. Mallows A method for comparing two hierarchical clusterings, J. Am. Stat. Assoc 78 383 1983 553 569
    • (1983) J. Am. Stat. Assoc , vol.78 , Issue.383 , pp. 553-569
    • Fowlkes, E.1    Mallows, C.L.2
  • 226
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W.M. Rand Objective criteria for the evaluation of clustering methods, J. Am. Stat. Assoc 66 336 1971 846 850
    • (1971) J. Am. Stat. Assoc , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 227
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert, and P. Arabie Comparing partitions, J. Classif. 2 1 1985 193 218
    • (1985) J. Classif. , vol.2 , Issue.1 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 229
    • 4344611435 scopus 로고    scopus 로고
    • Properties of the Hubert-Arable adjusted rand index
    • D. Steinley Properties of the Hubert-Arable adjusted rand index, Psychol. Methods 9 3 2004 386
    • (2004) Psychol. Methods , vol.9 , Issue.3 , pp. 386
    • Steinley, D.1
  • 230
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • K.K. Yeung, D.D. Haynor, and W. Ruzzo Validating clustering for gene expression data, Bioinformatics 17 4 2001 309 318
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 309-318
    • Yeung, K.K.1    Haynor, D.D.2    Ruzzo, W.3
  • 231
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • K. Yeung, C. Fraley, A. Murua, A.E. Raftery, and W.L. Ruzzo Model-based clustering and data transformations for gene expression data Bioinformatics 17 10 2001 977 987
    • (2001) Bioinformatics , vol.17 , Issue.10 , pp. 977-987
    • Yeung, K.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 234
    • 0023014685 scopus 로고
    • A non-classical logic for information retrieval
    • C.J. Van Rijsbergen A non-classical logic for information retrieval Comput. J. 29 6 1986 481 485
    • (1986) Comput. J. , vol.29 , Issue.6 , pp. 481-485
    • Van Rijsbergen, C.J.1
  • 236
    • 0032762144 scopus 로고    scopus 로고
    • An overlap invariant entropy measure of 3D medical image alignment
    • C. Studholme, D.L.G. Hill, and D.J. Hawkes An overlap invariant entropy measure of 3D medical image alignment, Pattern Recognit 32 1 1999 71 86
    • (1999) Pattern Recognit , vol.32 , Issue.1 , pp. 71-86
    • Studholme, C.1    Hill, D.L.G.2    Hawkes, D.J.3
  • 237
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl, and J. Ghosh Cluster ensembles - a knowledge reuse framework for combining multiple partitions J. Mach. Learn. Res. 3 2003 583 617
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 239
    • 0001699630 scopus 로고
    • Methods of comparing classifications
    • F. Rohlf Methods of comparing classifications Annu. Rev. Ecol. Syst. 1974 101 113
    • (1974) Annu. Rev. Ecol. Syst. , pp. 101-113
    • Rohlf, F.1
  • 242
    • 21844471761 scopus 로고    scopus 로고
    • Clustering of time-series subsequences is meaningless: Implications for previous and future research
    • E. Keogh, and J., Lin Clustering of time-series subsequences is meaningless: implications for previous and future research Knowledge and information systems 8 2 2005 154 177
    • (2005) Knowledge and Information Systems , vol.8 , Issue.2 , pp. 154-177
    • Keogh, E.1    Lin, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.