메뉴 건너뛰기




Volumn , Issue , 2010, Pages 225-258

Machine-learning-based defect prediction in high-precision foundry production

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84891971333     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (9)

References (51)
  • 2
    • 54849439075 scopus 로고    scopus 로고
    • Iron castings, advanced prediction tools, foundry process control and knowledge management
    • In
    • A. Zabala, R. Suárez, and J Izaga. Iron castings, advanced prediction tools, foundry process control and knowledge management. In Proceedings of the 68th WFC - World Foundry Congress, page 355360, 2008.
    • (2008) Proceedings of the 68th WFC - World Foundry Congress , pp. 355360
    • Zabala, A.1    Suárez, R.2    Izaga, J.3
  • 4
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press
    • Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.
    • (1995)
    • Bishop, C.M.1
  • 6
    • 4444285546 scopus 로고
    • Discriminatory analysis: Nonparametric discrimination:Small sample performance
    • Technical Report Project 21-49-004, Report Number 11
    • E. Fix and J. L. Hodges. Discriminatory analysis: Nonparametric discrimination:Small sample performance. Technical Report Project 21-49-004, Report Number 11, 1952.
    • (1952)
    • Fix, E.1    Hodges, J.L.2
  • 8
    • 15944375471 scopus 로고    scopus 로고
    • Intrusion detection using hierarchical neural networks
    • C. Zhang, J. Jiang, and M. Kamel. Intrusion detection using hierarchical neural networks. Pattern Recognition Letters, 26(6):779-791, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , Issue.6 , pp. 779-791
    • Zhang, C.1    Jiang, J.2    Kamel, M.3
  • 20
    • 33845636934 scopus 로고    scopus 로고
    • Improved k-nearest neighbor weather generating model
    • M. Sharif and D.H. Burn. Improved k-nearest neighbor weather generating model. Journal of Hydrologic Engineering, 12:42, 2007.
    • (2007) Journal of Hydrologic Engineering , vol.12 , pp. 42
    • Sharif, M.1    Burn, D.H.2
  • 23
    • 0037275489 scopus 로고    scopus 로고
    • Improved ferrite number prediction model that accounts for cooling rate effects part 1 model development
    • J.M. Vitek, S.A. David, and C.R. Hinman. Improved ferrite number prediction model that accounts for cooling rate effects part 1 model development. Welding Journal, 82(10).
    • Welding Journal , vol.82 , Issue.10
    • Vitek, J.M.1    David, S.A.2    Hinman, C.R.3
  • 24
    • 52449116108 scopus 로고    scopus 로고
    • Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes
    • H.Q. Peter and J. Wang. Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 20(4).
    • IEEE Transactions on Semiconductor Manufacturing , vol.20 , Issue.4
    • Peter, H.Q.1    Wang, J.2
  • 26
    • 57649112774 scopus 로고    scopus 로고
    • Optimizing casting parameters of ingot based on neural network and genetic algorithm
    • In ICNC '08, Washington, DC, USA, IEEE Computer Society
    • Pei Zhang, Zhiqiang Xu, and Fengshan Du. Optimizing casting parameters of ingot based on neural network and genetic algorithm. In ICNC '08: Proceedings of the 2008 Fourth International Conference on Natural Computation, pages 545-548, Washington, DC, USA, 2008. IEEE Computer Society.
    • (2008) Proceedings of the 2008 Fourth International Conference on Natural Computation , pp. 545-548
    • Zhang, P.1    Xu, Z.2    Du, F.3
  • 28
    • 0033309515 scopus 로고    scopus 로고
    • Neural networks in materials science
    • 966-979
    • H. Bhadeshia. Neural networks in materials science. ISIJ international, 39(10):966-979, 1999.
    • (1999) ISIJ international , vol.39 , Issue.10
    • Bhadeshia, H.1
  • 29
    • 0003162926 scopus 로고    scopus 로고
    • Application of bayesian neural network for modelling and prediction of ferrite number in austenitic stainless steel welds. ser. Mathematical Modelling of Weld Phenomena-VI
    • London: Institute of Materials
    • M. Vasudevan, M. Muruganath, and A. K. Bhaduri. Application of bayesian neural network for modelling and prediction of ferrite number in austenitic stainless steel welds. ser. Mathematical Modelling of Weld Phenomena-VI. London: Institute of Materials, pages 1079-1100, 2002.
    • (2002) , pp. 1079-1100
    • Vasudevan, M.1    Muruganath, M.2    Bhaduri, A.K.3
  • 30
    • 0028729425 scopus 로고
    • Product quality management using a real-time expert system
    • K.D. Schnelle and R.S.H. Mah. Product quality management using a real-time expert system. ISIJ International, 34(10):815-821, 1994.
    • (1994) ISIJ International , vol.34 , Issue.10 , pp. 815-821
    • Schnelle, K.D.1    Mah, R.S.H.2
  • 31
    • 77951805440 scopus 로고    scopus 로고
    • Inoculation alloy against microshrinkage cracking for treating cast iron castings
    • Patent US 2005/0180876A 1
    • Inoculation alloy against microshrinkage cracking for treating cast iron castings. Patent US 2005/0180876A 1.
  • 32
    • 33750495565 scopus 로고    scopus 로고
    • Análisis del proceso de solidificación en fundiciones grafíticas esferoidales
    • P. Larrañaga, J. Sertucha, and R. Suárez. Análisis del proceso de solidificación en fundiciones grafíticas esferoidales. Revista de Metalurgia, 42(2):244-255, 2006.
    • (2006) Revista de Metalurgia , vol.42 , Issue.2 , pp. 244-255
    • Larrañaga, P.1    Sertucha, J.2    Suárez, R.3
  • 33
    • 34547330363 scopus 로고    scopus 로고
    • Influence of moulding conditions and mould characteristics on the contraction defects appearance in ductile iron castings
    • J. Sertucha, R. Suárez, J. Legazpi, and P. Gacetabeitia. Influence of moulding conditions and mould characteristics on the contraction defects appearance in ductile iron castings. Revista de Metalurgia, 43(3):188-195, 2007.
    • (2007) Revista de Metalurgia , vol.43 , Issue.3 , pp. 188-195
    • Sertucha, J.1    Suárez, R.2    Legazpi, J.3    Gacetabeitia, P.4
  • 34
    • 0345920538 scopus 로고    scopus 로고
    • A fracture mechanics study of nodular iron
    • March-April
    • J.F. Carrasquilla and R. Ríos. A fracture mechanics study of nodular iron. Revista de Metalurgia, 35(5):279-291, March-April 1999.
    • (1999) Revista de Metalurgia , vol.35 , Issue.5 , pp. 279-291
    • Carrasquilla, J.F.1    Ríos, R.2
  • 35
    • 33747495252 scopus 로고    scopus 로고
    • Mechanical properties dependency on chemical composition of spheroidal graphite cast iron
    • March-April
    • R. Gonzaga-Cinco and J. Fernández-Carrasquilla. Mechanical properties dependency on chemical composition of spheroidal graphite cast iron. Revista de Metalurgia, 42:91-102, March-April 2006.
    • (2006) Revista de Metalurgia , vol.42 , pp. 91-102
    • Gonzaga-Cinco, R.1    Fernández-Carrasquilla, J.2
  • 36
    • 0036478923 scopus 로고    scopus 로고
    • Shape of graphite and usual tensile properties of sg cast iron:Part 1
    • M. Hecht and F. Condet. Shape of graphite and usual tensile properties of sg cast iron:Part 1. Fonderie, Fondeur d'aujourd'hui, 212:14-28, 2002.
    • (2002) Fonderie, Fondeur d'aujourd'hui , vol.212 , pp. 14-28
    • Hecht, M.1    Condet, F.2
  • 37
    • 0003950747 scopus 로고
    • Mechanical Properties of Metals: Atomistic and Fractal Continuum Approaches
    • World Scientific Pub Co Inc
    • C. W. Lung and Norman H. March. Mechanical Properties of Metals: Atomistic and Fractal Continuum Approaches. World Scientific Pub Co Inc, 1992.
    • (1992)
    • Lung, C.W.1    March, N.H.2
  • 38
    • 1242273506 scopus 로고    scopus 로고
    • ASTM D1062-Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds
    • American Society for Testing and Materials
    • American Society for Testing and Materials. ASTM D1062-Standard Test Method for Cleavage Strength of Metal-to-Metal Adhesive Bonds, 2008.
    • (2008)
  • 39
    • 70449399553 scopus 로고    scopus 로고
    • ASTM B489-e1 Standard Practice for Bend Test for Ductility of Electrodeposited and Autocatalytically Deposited Metal Coatings on Metals
    • American Society for Testing and Materials
    • American Society for Testing and Materials. ASTM B489-e1 Standard Practice for Bend Test for Ductility of Electrodeposited and Autocatalytically Deposited Metal Coatings on Metals, 2008.
    • (2008)
  • 40
    • 0001185873 scopus 로고
    • An essay towards solving a problem in the doctrine of chances
    • T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, 53:370-418, 1763.
    • (1763) Philosophical Transactions of the Royal Society , vol.53 , pp. 370-418
    • Bayes, T.1
  • 41
    • 0003462302 scopus 로고    scopus 로고
    • Expert Systems and Probabilistic Network Models
    • Springer, New York, NY, USA, erste edition, December
    • Enrique Castillo, José M. Gutiérrez, and Ali S. Hadi. Expert Systems and Probabilistic Network Models. Springer, New York, NY, USA, erste edition, December 1996.
    • (1996)
    • Castillo, E.1    Gutiérrez, J.M.2    Hadi, A.S.3
  • 42
    • 0042488498 scopus 로고    scopus 로고
    • Bayesian networks. Technical Report Tech
    • Rep. R-216, Computer Science Department, University of California, Los Angeles
    • J. Pearl and S. Russell. Bayesian networks. Technical Report Tech. Rep. R-216, Computer Science Department, University of California, Los Angeles, 2000.
    • (2000)
    • Pearl, J.1    Russell, S.2
  • 43
    • 56849101206 scopus 로고    scopus 로고
    • Sensitivity Analysis: Gauging the Worth of Scientific Models
    • Springer, New York, NY, USA, wiley edition, August
    • Chan K. Saltelli, A. and and Scott E. M. Sensitivity Analysis: Gauging the Worth of Scientific Models. Springer, New York, NY, USA, wiley edition, August 2000.
    • (2000)
    • Chan, K.1    Saltelli, A.2    Scott, E.M.3
  • 44
  • 45
    • 0003612091 scopus 로고
    • Machine learning, neural and statistical classification
    • Ellis Horwood, Upper Saddle River, NJ, USA
    • Donald Michie, D. J. Spiegelhalter, C. C. Taylor, and John Campbell, editors. Machine learning, neural and statistical classification. Ellis Horwood, Upper Saddle River, NJ, USA, 1994.
    • (1994)
    • Michie, D.1    Spiegelhalter, D.J.2    Taylor, C.C.3    Campbell, J.4
  • 46
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • In
    • R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In International Joint Conference on Artificial Intelligence, volume 14, pages 1137-1145, 1995.
    • (1995) International Joint Conference on Artificial Intelligence , vol.14 , pp. 1137-1145
    • Kohavi, R.1
  • 48
    • 0003584577 scopus 로고    scopus 로고
    • Artificial Intelligence: A Modern Approach
    • (Second Edition). Prentice Hall
    • S. J. Russell and Norvig. Artificial Intelligence: A Modern Approach (Second Edition). Prentice Hall, 2003.
    • (2003)
    • Russell, S.J.1    Norvig2
  • 51
    • 0036430903 scopus 로고    scopus 로고
    • Noise reduction in BOLD-based fMRI using component analysis
    • C.G. Thomas, R.A. Harshman, and R.S. Menon. Noise reduction in BOLD-based fMRI using component analysis. Neuroimage, 17(3):1521-1537, 2002.
    • (2002) Neuroimage , vol.17 , Issue.3 , pp. 1521-1537
    • Thomas, C.G.1    Harshman, R.A.2    Menon, R.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.