메뉴 건너뛰기




Volumn 78, Issue 1-4, 2015, Pages 633-640

Enhanced real-time quality prediction model based on feature selected nonlinear calibration techniques

Author keywords

Feature selection; Monitoring; Nonlinear method; Process data; Quality prediction

Indexed keywords

FORECASTING; GENETIC ALGORITHMS; MONITORING; MULTIVARIANT ANALYSIS; PREDICTIVE ANALYTICS;

EID: 84925489151     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-014-6664-z     Document Type: Article
Times cited : (2)

References (23)
  • 1
    • 84871645782 scopus 로고    scopus 로고
    • Between-phase calibration modeling and transition analysis for phase-based quality interpretation and prediction
    • Zhao C, Gao F, Sun Y (2013) Between-phase calibration modeling and transition analysis for phase-based quality interpretation and prediction. AIChE J 59:108–119
    • (2013) AIChE J , vol.59 , pp. 108-119
    • Zhao, C.1    Gao, F.2    Sun, Y.3
  • 2
    • 84872859706 scopus 로고    scopus 로고
    • Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures
    • Qin SJ, Zheng Y (2013) Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE J 59:496–504
    • (2013) AIChE J , vol.59 , pp. 496-504
    • Qin, S.J.1    Zheng, Y.2
  • 3
    • 84900324117 scopus 로고    scopus 로고
    • A chemometrics toolbox based on projections and latent variables
    • Eriksson L, Trygg J, Wold S (2014) A chemometrics toolbox based on projections and latent variables. J Chemometr 28:332–346
    • (2014) J Chemometr , vol.28 , pp. 332-346
    • Eriksson, L.1    Trygg, J.2    Wold, S.3
  • 4
    • 84892714584 scopus 로고    scopus 로고
    • Performance evaluation of preprocessing techniques utilizing expert information in multivariate calibration
    • Sharma S, Goodarzi M, Ramon H, Saeys W (2014) Performance evaluation of preprocessing techniques utilizing expert information in multivariate calibration. Talanta 121:105–112
    • (2014) Talanta , vol.121 , pp. 105-112
    • Sharma, S.1    Goodarzi, M.2    Ramon, H.3    Saeys, W.4
  • 5
    • 84870254524 scopus 로고    scopus 로고
    • An adaptive support vector regression based on a new sequence of unified orthogonal polynomials
    • Zhaoa J, Yan G, Fenga B, Mao W, Bai J (2013) An adaptive support vector regression based on a new sequence of unified orthogonal polynomials. Pattern Recogn 46:899–913
    • (2013) Pattern Recogn , vol.46 , pp. 899-913
    • Zhaoa, J.1    Yan, G.2    Fenga, B.3    Mao, W.4    Bai, J.5
  • 6
    • 84858443817 scopus 로고    scopus 로고
    • Towards the unification of structural and statistical pattern recognition
    • Bunke H, Riesen K (2012) Towards the unification of structural and statistical pattern recognition. Pattern Recogn Lett 33:811–825
    • (2012) Pattern Recogn Lett , vol.33 , pp. 811-825
    • Bunke, H.1    Riesen, K.2
  • 7
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel Hilbert space
    • Rosipal R, Trejo LJ (2001) Kernel partial least squares regression in reproducing kernel Hilbert space. J Mach Learn Res 2:97–123
    • (2001) J Mach Learn Res , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 8
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang Y (2009) Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem Eng Sci 64:801–811
    • (2009) Chem Eng Sci , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 9
    • 84898902434 scopus 로고    scopus 로고
    • Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data
    • Singh KP, Gupta S, Rai P (2014) Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data. Environ Monit Assess 186:2749–2765
    • (2014) Environ Monit Assess , vol.186 , pp. 2749-2765
    • Singh, K.P.1    Gupta, S.2    Rai, P.3
  • 10
    • 84880684699 scopus 로고    scopus 로고
    • Tree-based iterative input variable selection for hydrological modeling
    • Galelli S, Castelletti A (2013) Tree-based iterative input variable selection for hydrological modeling. Water Resour Res 49:4295–4310
    • (2013) Water Resour Res , vol.49 , pp. 4295-4310
    • Galelli, S.1    Castelletti, A.2
  • 11
    • 0034868132 scopus 로고    scopus 로고
    • Genetic algorithms in chemometrics and chemistry: a review
    • Leardi R (2001) Genetic algorithms in chemometrics and chemistry: a review. J Chemom 15:559–569
    • (2001) J Chemom , vol.15 , pp. 559-569
    • Leardi, R.1
  • 13
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z, Song Z, Gao F (2013) Review of recent research on data-based process monitoring. Ind Eng Chem Res 52:3543–3562
    • (2013) Ind Eng Chem Res , vol.52 , pp. 3543-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 15
    • 84872871509 scopus 로고    scopus 로고
    • A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data
    • Yu J (2013) A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data. AIChE J 59:407–419
    • (2013) AIChE J , vol.59 , pp. 407-419
    • Yu, J.1
  • 17
    • 0026549681 scopus 로고
    • Conformation analysis of a dinucleotide photodimer with the aid of the genetic algorithm
    • Blommers MJJ, Lucasius CB, Kateman G, Kaptein R (1992) Conformation analysis of a dinucleotide photodimer with the aid of the genetic algorithm. Biopolymers 32:45–52
    • (1992) Biopolymers , vol.32 , pp. 45-52
    • Blommers, M.J.J.1    Lucasius, C.B.2    Kateman, G.3    Kaptein, R.4
  • 18
    • 0345019845 scopus 로고    scopus 로고
    • Genetic algorithms applied to feature selection in PLS regression: how and when to use them
    • Leardi R, Gonzalez AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometr Intell Lab Syst 41:195–207
    • (1998) Chemometr Intell Lab Syst , vol.41 , pp. 195-207
    • Leardi, R.1    Gonzalez, A.L.2
  • 19
    • 0035852406 scopus 로고    scopus 로고
    • A hybrid classification method: discrete canonical variate analysis using a genetic algorithm
    • Kemsley EK (2001) A hybrid classification method: discrete canonical variate analysis using a genetic algorithm. Chemometr Intell Lab Syst 55:39–51
    • (2001) Chemometr Intell Lab Syst , vol.55 , pp. 39-51
    • Kemsley, E.K.1
  • 20
    • 28844491824 scopus 로고    scopus 로고
    • Multivariate calibration of near infrared spectra by orthogonal wavelet correction using a genetic algorithm
    • Esteban-Díez I, González-Sáiz JM, Gómez-Cámara D, Pizarro Millan C (2006) Multivariate calibration of near infrared spectra by orthogonal wavelet correction using a genetic algorithm. Anal Chim Acta 555:84–95
    • (2006) Anal Chim Acta , vol.555 , pp. 84-95
    • Esteban-Díez, I.1    González-Sáiz, J.M.2    Gómez-Cámara, D.3    Pizarro Millan, C.4
  • 21
    • 77950369262 scopus 로고    scopus 로고
    • Decomposition method for solving optimal material orientation problems
    • Majak J, Pohlak M (2010) Decomposition method for solving optimal material orientation problems. Compos Struct 92:1839–1845
    • (2010) Compos Struct , vol.92 , pp. 1839-1845
    • Majak, J.1    Pohlak, M.2
  • 23
    • 84951601886 scopus 로고
    • Cross-validatory estimation of components in factor and principal components models
    • Wold S (1978) Cross-validatory estimation of components in factor and principal components models. Technometrics 20:397–405
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.