메뉴 건너뛰기




Volumn 68, Issue 1-4, 2013, Pages 197-207

ANN-based prediction of surface and hole quality in drilling of AISI D2 cold work tool steel

Author keywords

ANN; Cemented carbide drills; Roundness error; Surface roughness

Indexed keywords

ALUMINUM COATED STEEL; ALUMINUM COATINGS; ALUMINUM NITRIDE; BOREHOLES; CARBIDE TOOLS; CARBIDES; DRILLS; ERRORS; FORECASTING; INFILL DRILLING; MEAN SQUARE ERROR; MONOLAYERS; MULTILAYER NEURAL NETWORKS; MULTILAYERS; RHENIUM COMPOUNDS; SURFACE ROUGHNESS; TITANIUM NITRIDE; TOOL STEEL;

EID: 84888368346     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-012-4719-6     Document Type: Article
Times cited : (19)

References (25)
  • 1
    • 1342290020 scopus 로고    scopus 로고
    • The use of soft/lubricating coatings when dry drilling BS L168 aluminium alloy
    • 10.1016/j.surfcoat.2003.08.012
    • Coldwell HL, Dewes RC, Aspinwall DK, Renevier NM, Teer DG (2004) The use of soft/lubricating coatings when dry drilling BS L168 aluminium alloy. Surf Coat Technol 177-178:716-726
    • (2004) Surf Coat Technol , vol.177-178 , pp. 716-726
    • Coldwell, H.L.1    Dewes, R.C.2    Aspinwall, D.K.3    Renevier, N.M.4    Teer, D.G.5
  • 2
    • 0033933186 scopus 로고    scopus 로고
    • An integrated approach to evaluating the tribo-contact for coated cutting inserts
    • 10.1016/S0043-1648(00)00324-0
    • Grzesik W (2000) An integrated approach to evaluating the tribo-contact for coated cutting inserts. Wear 240:9-18
    • (2000) Wear , vol.240 , pp. 9-18
    • Grzesik, W.1
  • 3
    • 76349097797 scopus 로고    scopus 로고
    • TiAlN/TiAlZrN multilayered hard coatings for enhanced performance of HSS drilling tools
    • 10.1016/j.surfcoat.2009.08.011
    • Braic V, Zotia CN, Balaceanu M, Kiss A, Vladescu A, Popescu A, Braic M (2010) TiAlN/TiAlZrN multilayered hard coatings for enhanced performance of HSS drilling tools. Surf Coat Technol 204:1925-1928
    • (2010) Surf Coat Technol , vol.204 , pp. 1925-1928
    • Braic, V.1    Zotia, C.N.2    Balaceanu, M.3    Kiss, A.4    Vladescu, A.5    Popescu, A.6    Braic, M.7
  • 4
    • 0037792881 scopus 로고    scopus 로고
    • 0.5)N coatings deposited by plasma enhanced chemical vapor deposition
    • 10.1016/S0257-8972(03)00184-1
    • 0.5)N coatings deposited by plasma enhanced chemical vapor deposition. Surf Coat Technol 169-170:433-437
    • (2003) Surf Coat Technol , vol.169-170 , pp. 433-437
    • Lee, D.K.1    Lee, S.H.2    Lee, J.J.3
  • 5
    • 45749102777 scopus 로고    scopus 로고
    • Evaluation of drilled hole quality in Al 2024 alloy
    • 10.1007/s00170-007-1049-1
    • Kurt M, Kaynak Y, Bagci E (2008) Evaluation of drilled hole quality in Al 2024 alloy. Int J Adv Manuf Technol 37:1051-1060
    • (2008) Int J Adv Manuf Technol , vol.37 , pp. 1051-1060
    • Kurt, M.1    Kaynak, Y.2    Bagci, E.3
  • 6
    • 0035803961 scopus 로고    scopus 로고
    • Experimental investigation of the effect of drill coatings on hole quality under dry and wet drilling conditions
    • 10.1016/S0257-8972(01)01349-4
    • Kalidas S, DeVor RE, Kapoor SG (2001) Experimental investigation of the effect of drill coatings on hole quality under dry and wet drilling conditions. Surf Coat Technol 148:117-128
    • (2001) Surf Coat Technol , vol.148 , pp. 117-128
    • Kalidas, S.1    Devor, R.E.2    Kapoor, S.G.3
  • 7
    • 84860201907 scopus 로고    scopus 로고
    • The performances of different coated carbide drills when drilling a cast nickel-based alloy
    • 10.4028/www.scientific.net/AMR.497.41
    • Xue C, Chen WY (2012) The performances of different coated carbide drills when drilling a cast nickel-based alloy. Adv Mater Res 497:41-45
    • (2012) Adv Mater Res , vol.497 , pp. 41-45
    • Xue, C.1    Chen, W.Y.2
  • 8
    • 17544405295 scopus 로고    scopus 로고
    • Dry cutting performance of partially filtered arc deposited titanium aluminium nitride coatings with various metal nitride base coatings
    • 10.1016/S0257-8972(01)01421-9
    • Harris SG, Doyle ED, Vlasveld AC, Dolder PJ (2001) Dry cutting performance of partially filtered arc deposited titanium aluminium nitride coatings with various metal nitride base coatings. Surf Coat Technol 146-147:305-311
    • (2001) Surf Coat Technol , vol.146-147 , pp. 305-311
    • Harris, S.G.1    Doyle, E.D.2    Vlasveld, A.C.3    Dolder, P.J.4
  • 9
    • 33847168491 scopus 로고    scopus 로고
    • Performance of coated-and uncoated-carbide tools when drilling titanium alloy-Ti-6Al4V
    • 10.1016/j.jmatprotec.2006.03.142
    • Sharif S, Rahim EA (2007) Performance of coated-and uncoated-carbide tools when drilling titanium alloy-Ti-6Al4V. J Mater Process Technol 185:72-76
    • (2007) J Mater Process Technol , vol.185 , pp. 72-76
    • Sharif, S.1    Rahim, E.A.2
  • 10
    • 58149145882 scopus 로고    scopus 로고
    • Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network
    • 10.1016/j.jmatprotec.2008.02.066
    • Adel MH, Alrashdan A, Hayajneh MT, Mayyas AT (2009) Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network. J Mater Process Technol 209:894-899
    • (2009) J Mater Process Technol , vol.209 , pp. 894-899
    • Adel, M.H.1    Alrashdan, A.2    Hayajneh, M.T.3    Mayyas, A.T.4
  • 11
    • 79751524432 scopus 로고    scopus 로고
    • Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling
    • 10.1007/s00170-010-2714-3
    • Gaitonde VN, Karnik SR, Figueira L, Davim JP (2011) Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. Int J Adv Manuf Technol 52:101-114
    • (2011) Int J Adv Manuf Technol , vol.52 , pp. 101-114
    • Gaitonde, V.N.1    Karnik, S.R.2    Figueira, L.3    Davim, J.P.4
  • 12
    • 59249086891 scopus 로고    scopus 로고
    • Prediction of tribological behavior of aluminum-copper based composite using artificial neural network
    • 10.1016/j.jallcom.2008.03.035
    • Hayajneh M, Adel MH, Alrashdan A, Mayyas AT (2009) Prediction of tribological behavior of aluminum-copper based composite using artificial neural network. J Alloy Compd 470:584-588
    • (2009) J Alloy Compd , vol.470 , pp. 584-588
    • Hayajneh, M.1    Adel, M.H.2    Alrashdan, A.3    Mayyas, A.T.4
  • 13
    • 79955806087 scopus 로고    scopus 로고
    • Online tool wear prediction in drilling operations using selective artificial neural network ensemble model
    • 10.1007/s00521-011-0539-0
    • Yu J (2011) Online tool wear prediction in drilling operations using selective artificial neural network ensemble model. Neural Comput Appl 20:473-485
    • (2011) Neural Comput Appl , vol.20 , pp. 473-485
    • Yu, J.1
  • 14
    • 79953029485 scopus 로고    scopus 로고
    • Analysis and predictive modeling of performance parameters in electrochemical drilling process
    • 10.1007/s00170-010-2897-7
    • Chavoshi SZ (2011) Analysis and predictive modeling of performance parameters in electrochemical drilling process. Int J Adv Manuf Technol 53:1081-1101
    • (2011) Int J Adv Manuf Technol , vol.53 , pp. 1081-1101
    • Chavoshi, S.Z.1
  • 15
    • 33746906672 scopus 로고    scopus 로고
    • A study of surface roughness in drilling using mathematical analysis and neural networks
    • 10.1007/s00170-005-2538-8
    • Sanjay C, Jyothi C (2006) A study of surface roughness in drilling using mathematical analysis and neural networks. Int J Adv Manuf Technol 29:846-852
    • (2006) Int J Adv Manuf Technol , vol.29 , pp. 846-852
    • Sanjay, C.1    Jyothi, C.2
  • 16
    • 84888318510 scopus 로고    scopus 로고
    • Surface roughness prediction using artificial neural networks when drilling Udimet 720
    • 10.1016/j.proeng.2012.09.572
    • Vrabel M, Mankova I, Beno J, Tuharský J (2012) Surface roughness prediction using artificial neural networks when drilling Udimet 720. Procedia Eng 48:693-700
    • (2012) Procedia Eng , vol.48 , pp. 693-700
    • Vrabel, M.1    Mankova, I.2    Beno, J.3    Tuharský, J.4
  • 17
    • 84870927834 scopus 로고    scopus 로고
    • Using artificial intelligence to predict surface roughness in deep drilling of steel components
    • 10.1007/s10845-011-0506-8
    • Bustillo A, Correa M (2012) Using artificial intelligence to predict surface roughness in deep drilling of steel components. J Intell Manuf 23:1893-1902
    • (2012) J Intell Manuf , vol.23 , pp. 1893-1902
    • Bustillo, A.1    Correa, M.2
  • 18
    • 84870900608 scopus 로고    scopus 로고
    • A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling
    • 10.1007/s10845-010-0478-0
    • Grzenda M, Bustillo A, Zawistowski P (2012) A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. J Intell Manuf 23:1733-1743
    • (2012) J Intell Manuf , vol.23 , pp. 1733-1743
    • Grzenda, M.1    Bustillo, A.2    Zawistowski, P.3
  • 19
    • 43849109630 scopus 로고    scopus 로고
    • Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network
    • 10.1016/j.jmatprotec.2006.04.126
    • Tsao CC, Hocheng H (2008) Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J Mater Process Technol 203:342-348
    • (2008) J Mater Process Technol , vol.203 , pp. 342-348
    • Tsao, C.C.1    Hocheng, H.2
  • 20
    • 84859554466 scopus 로고    scopus 로고
    • Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels
    • 10.1007/s00170-011-3616-8
    • Çiçek A, KIvak T, Uygur I, Ekici E, Turgut Y (2012) Performance of cryogenically treated M35 HSS drills in drilling of austenitic stainless steels. Int J Adv Manuf Technol 60:65-73
    • (2012) Int J Adv Manuf Technol , vol.60 , pp. 65-73
    • Çiçek, A.1    Kivak, T.2    Uygur, I.3    Ekici, E.4    Turgut, Y.5
  • 21
    • 84860448195 scopus 로고    scopus 로고
    • Taguchi method based optimization of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills
    • 10.1016/j.measurement.2012.02.022
    • KIvak T, Samtaş G, Çiçek A (2012) Taguchi method based optimization of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Meas 45:1547-1557
    • (2012) Meas , vol.45 , pp. 1547-1557
    • Kivak, T.1    Samtaş, G.2    Çiçek, A.3
  • 22
    • 84872776856 scopus 로고    scopus 로고
    • Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network
    • doi: 10.1016/j.energy.2012.10.052
    • Çay Y, Korkmaz I, Çiçek A, Kara F (2013) Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network. Energy. doi: 10.1016/j.energy.2012.10.052
    • (2013) Energy
    • Çay, Y.1    Korkmaz, I.2    Çiçek, A.3    Kara, F.4
  • 23
    • 84856393468 scopus 로고    scopus 로고
    • Prediction of engine performance for an alternative fuel using artificial neural network
    • 10.1016/j.applthermaleng.2011.11.019
    • Çay Y, Çiçek A, Kara F, Saǧiroǧlu S (2012) Prediction of engine performance for an alternative fuel using artificial neural network. Appl Therm Eng 37:217-225
    • (2012) Appl Therm Eng , vol.37 , pp. 217-225
    • Çay, Y.1    Çiçek, A.2    Kara, F.3    Saǧiroǧlu, S.4
  • 24
    • 31444438265 scopus 로고    scopus 로고
    • Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools
    • 10.1016/j.triboint.2005.05.005
    • Ciftci I (2006) Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribol Int 39:565-569
    • (2006) Tribol Int , vol.39 , pp. 565-569
    • Ciftci, I.1
  • 25
    • 0242667530 scopus 로고    scopus 로고
    • Drilling process optimization for graphite/bismaleimide-titanium alloy stacks
    • 10.1016/S0263-8223(03)00137-5
    • Kim D, Ramulu M (2004) Drilling process optimization for graphite/bismaleimide-titanium alloy stacks. Compos Struct 63:101-114
    • (2004) Compos Struct , vol.63 , pp. 101-114
    • Kim, D.1    Ramulu, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.