-
2
-
-
71149116544
-
Curriculum learning
-
Bengio, Y., Louradour, J., Collobert, R., Weston, J., Curriculum learning. International Confenence on Machine Learning, 2009, 41–48.
-
(2009)
International Confenence on Machine Learning
, pp. 41-48
-
-
Bengio, Y.1
Louradour, J.2
Collobert, R.3
Weston, J.4
-
4
-
-
57349174008
-
Enhancing sparsity by reweighted l1 minimization
-
Candès, E.J., Wakin, M.B., Boyd, S.P., Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14:5–6 (2008), 877–905.
-
(2008)
J. Fourier Anal. Appl.
, vol.14
, Issue.5-6
, pp. 877-905
-
-
Candès, E.J.1
Wakin, M.B.2
Boyd, S.P.3
-
5
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan, J., Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96:456 (2001), 1348–1360.
-
(2001)
J. Am. Stat. Assoc.
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
6
-
-
0037186544
-
Stochastic gradient boosting
-
Friedman, J.H., Stochastic gradient boosting. Comput. Stat. Data Anal. 38:4 (2002), 367–378.
-
(2002)
Comput. Stat. Data Anal.
, vol.38
, Issue.4
, pp. 367-378
-
-
Friedman, J.H.1
-
7
-
-
84897545592
-
A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
-
Gong, P., Zhang, C., Lu, Z., Huang, J., Ye, J., A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. International Confenence on Machine Learning, 2013, 37–45.
-
(2013)
International Confenence on Machine Learning
, pp. 37-45
-
-
Gong, P.1
Zhang, C.2
Lu, Z.3
Huang, J.4
Ye, J.5
-
8
-
-
84913585680
-
Easy samples first: self-paced reranking for zeroexample multimedia search
-
Jiang, L., Meng, D., Mitamura, T., Hauptmann, A., Easy samples first: self-paced reranking for zeroexample multimedia search. ACM Multimedia, 2014, 547–556.
-
(2014)
ACM Multimedia
, pp. 547-556
-
-
Jiang, L.1
Meng, D.2
Mitamura, T.3
Hauptmann, A.4
-
9
-
-
84937895884
-
Self-paced learning with diversity
-
Jiang, L., Meng, D.Y., Yu, S., Lan, Z.Z., Shan, S.G., Hauptman, A., Self-paced learning with diversity. Conference on Neural Information Processing Systems, 2014, 2078–2086.
-
(2014)
Conference on Neural Information Processing Systems
, pp. 2078-2086
-
-
Jiang, L.1
Meng, D.Y.2
Yu, S.3
Lan, Z.Z.4
Shan, S.G.5
Hauptman, A.6
-
10
-
-
84960125171
-
Self-paced curriculum learning
-
Jiang, L., Meng, D.Y., Zhao, Q., Shan, S.G., Hauptman, A., Self-paced curriculum learning. Proceeding of American Association for Artificial Intelligence, 2015, 2694–2700.
-
(2015)
Proceeding of American Association for Artificial Intelligence
, pp. 2694-2700
-
-
Jiang, L.1
Meng, D.Y.2
Zhao, Q.3
Shan, S.G.4
Hauptman, A.5
-
11
-
-
84962835109
-
Exploiting feature and class relationships in video categorization with regularized deep neural networks
-
ArXiv preprint: 1502.07209.
-
Y.G. Jiang, Z. Wu, J. Wang, X. Xue, S.F. Chang, Exploiting feature and class relationships in video categorization with regularized deep neural networks, 2015b, ArXiv preprint: 1502.07209.
-
(2015)
-
-
Jiang, Y.G.1
Wu, Z.2
Wang, J.3
Xue, X.4
Chang, S.F.5
-
12
-
-
85030031936
-
On the global convergence of majorization minimization algorithms for nonconvex optimization problems
-
ArXiv preprint: 1504.07791v2.
-
Y. Kang, Z. Zhang, W. Li, On the global convergence of majorization minimization algorithms for nonconvex optimization problems, 2015, ArXiv preprint: 1504.07791v2.
-
(2015)
-
-
Kang, Y.1
Zhang, Z.2
Li, W.3
-
13
-
-
85162562509
-
How do humans teach: on curriculum learning and teaching dimension
-
Khan, F., Zhu, X., Mutlu, B., How do humans teach: on curriculum learning and teaching dimension. Conference on Neural Information Processing Systems, 2011, 1449–1457.
-
(2011)
Conference on Neural Information Processing Systems
, pp. 1449-1457
-
-
Khan, F.1
Zhu, X.2
Mutlu, B.3
-
14
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Conference on Neural Information Processing Systems, 2012, 1097–1105.
-
(2012)
Conference on Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
15
-
-
85161967298
-
Self-paced learning for latent variable models
-
Kumar, M., Packer, B., Koller, D., Self-paced learning for latent variable models. Conference on Neural Information Processing Systems, 2010, 1189–1197.
-
(2010)
Conference on Neural Information Processing Systems
, pp. 1189-1197
-
-
Kumar, M.1
Packer, B.2
Koller, D.3
-
16
-
-
84856638291
-
Learning specific-class segmentation from diverse data
-
Kumar, M., Turki, H., Preston, D., Koller, D., Learning specific-class segmentation from diverse data. International Conference on Computer Vision, 2011, 1800–1807.
-
(2011)
International Conference on Computer Vision
, pp. 1800-1807
-
-
Kumar, M.1
Turki, H.2
Preston, D.3
Koller, D.4
-
17
-
-
77950023906
-
Optimization transfer using surrogate objective functions
-
Lange, K., Hunter, D., Yang, I., Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9:1 (2000), 1–20.
-
(2000)
J. Comput. Graph. Stat.
, vol.9
, Issue.1
, pp. 1-20
-
-
Lange, K.1
Hunter, D.2
Yang, I.3
-
18
-
-
84904617585
-
Are all training examples equally valuable?
-
In arXiv preprint: 1311.6510
-
A. Lapedriza, H. Pirsiavash, Z. Bylinskii, A. Torralba, Are all training examples equally valuable?, 2013, In arXiv preprint: 1311.6510.
-
(2013)
-
-
Lapedriza, A.1
Pirsiavash, H.2
Bylinskii, Z.3
Torralba, A.4
-
20
-
-
85006132087
-
Learning to detect concepts from webly-labeled video data
-
Liang, J.W., Jiang, L., Meng, D.Y., Hauptman, A., Learning to detect concepts from webly-labeled video data. International Joint Conference on Artificial Intelligence, 2016, 1746–1752.
-
(2016)
International Joint Conference on Artificial Intelligence
, pp. 1746-1752
-
-
Liang, J.W.1
Jiang, L.2
Meng, D.Y.3
Hauptman, A.4
-
21
-
-
84973882796
-
Towards computational baby learning: a weakly-supervised approach for object detection
-
Liang, X., Liu, S., Wei, Y., Liu, L., Lin, S., Yan, L., Towards computational baby learning: a weakly-supervised approach for object detection. International Conference on Computer Vision, 2015, 999–1007.
-
(2015)
International Conference on Computer Vision
, pp. 999-1007
-
-
Liang, X.1
Liu, S.2
Wei, Y.3
Liu, L.4
Lin, S.5
Yan, L.6
-
22
-
-
79956299111
-
Supervised learning with minimal effort
-
Springer
-
Ni, E., Ling, C., Supervised learning with minimal effort. Advances in Knowledge Discovery and Data Mining, 2010, Springer, 476–487.
-
(2010)
Advances in Knowledge Discovery and Data Mining
, pp. 476-487
-
-
Ni, E.1
Ling, C.2
-
23
-
-
84908024543
-
Relaxed sparse eigenvalue conditions for sparse estimation via non-convex regularized regression
-
Pan, Z., Zhang, C., Relaxed sparse eigenvalue conditions for sparse estimation via non-convex regularized regression. Pattern Recognit. 48:1 (2015), 231–243.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.1
, pp. 231-243
-
-
Pan, Z.1
Zhang, C.2
-
24
-
-
80053279731
-
Baby steps: how “less is more” in unsupervised dependency parsing
-
Spitkovsky, V.I., Alshawi, H., Jurafsky, D., Baby steps: how “less is more” in unsupervised dependency parsing. NIPS Workshop: Grammar Induction, Representation of Language and Language Learning, 2009, 1–10.
-
(2009)
NIPS Workshop: Grammar Induction, Representation of Language and Language Learning
, pp. 1-10
-
-
Spitkovsky, V.I.1
Alshawi, H.2
Jurafsky, D.3
-
26
-
-
84919795085
-
Outlier path: a homotopy algorithm for robust SVM
-
Suzumura, S., Ogawa, K., Sugiyama, M., Takeuchi, I., Outlier path: a homotopy algorithm for robust SVM. International Conference on Machine Learning, 2014, 1098–1106.
-
(2014)
International Conference on Machine Learning
, pp. 1098-1106
-
-
Suzumura, S.1
Ogawa, K.2
Sugiyama, M.3
Takeuchi, I.4
-
27
-
-
84877780666
-
Shifting weights: adapting object detectors from image to video
-
Tang, K., Ramanathan, V., Li, F., Koller, D., Shifting weights: adapting object detectors from image to video. Conference on Neural Information Processing Systems, 2012, 638–646.
-
(2012)
Conference on Neural Information Processing Systems
, pp. 638-646
-
-
Tang, K.1
Ramanathan, V.2
Li, F.3
Koller, D.4
-
28
-
-
26844582271
-
Parameter convergence for EM and MM algorithms
-
Vaida, F., Parameter convergence for EM and MM algorithms. Stat. Sin. 15:3 (2005), 831–840.
-
(2005)
Stat. Sin.
, vol.15
, Issue.3
, pp. 831-840
-
-
Vaida, F.1
-
29
-
-
85006098718
-
Efficient large scale video classification
-
ArXiv preprint: 1505.06250
-
B. Varadarajan, G. Toderici, S. Vijayanarasimhan, A. Natsev, Efficient large scale video classification, 2015, ArXiv preprint: 1505.06250.
-
(2015)
-
-
Varadarajan, B.1
Toderici, G.2
Vijayanarasimhan, S.3
Natsev, A.4
-
30
-
-
84896062135
-
Nonconvex relaxation approaches to robust matrix recovery
-
Wang, S., Liu, D., Zhang, Z., Nonconvex relaxation approaches to robust matrix recovery. International Joint Conference on Artificial Intelligence, 2013, 1764–1770.
-
(2013)
International Joint Conference on Artificial Intelligence
, pp. 1764-1770
-
-
Wang, S.1
Liu, D.2
Zhang, Z.3
-
31
-
-
84908218252
-
Optimal computational and statistical rates of convergence for sparse nonconvex learning problems
-
Wang, Z., Liu, H., Zhang, T., Optimal computational and statistical rates of convergence for sparse nonconvex learning problems. Ann. Stat. 42 (2014), 2164–2201.
-
(2014)
Ann. Stat.
, vol.42
, pp. 2164-2201
-
-
Wang, Z.1
Liu, H.2
Zhang, T.3
-
32
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M., Use of the zero-norm with linear models and kernel methods. J. Mach. Learn. Res. 3 (2003), 1439–1461.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
-
33
-
-
85203631893
-
CMU-informedia@TRECVID 2014 multimedia eventdetection (MED)
-
Yu, S., Jiang, L., Mao, Z., al, e., CMU-informedia@TRECVID 2014 multimedia eventdetection (MED). TRECVID Video Retrieval Evaluation Workshop, 2014.
-
(2014)
TRECVID Video Retrieval Evaluation Workshop
-
-
Yu, S.1
Jiang, L.2
Mao, Z.3
al, E.4
-
34
-
-
77649284492
-
Nearly unbiased variable selection under minimax concave penalty
-
Zhang, C., Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38:2 (2010), 894–942.
-
(2010)
Ann. Stat.
, vol.38
, Issue.2
, pp. 894-942
-
-
Zhang, C.1
-
35
-
-
84871532743
-
A general theory of concave regularization for high-dimensional sparse estimation problems
-
Zhang, C., Zhang, T., A general theory of concave regularization for high-dimensional sparse estimation problems. Stat. Sci. 27:4 (2012), 576–593.
-
(2012)
Stat. Sci.
, vol.27
, Issue.4
, pp. 576-593
-
-
Zhang, C.1
Zhang, T.2
-
36
-
-
85020785481
-
Co-saliency detection via a self-paced multiple-instance learning framework
-
Zhang, D., Meng, D., Han, J., Co-saliency detection via a self-paced multiple-instance learning framework. International Conference on Computer Vision, 2015, 594–602.
-
(2015)
International Conference on Computer Vision
, pp. 594-602
-
-
Zhang, D.1
Meng, D.2
Han, J.3
-
37
-
-
85018479379
-
Co-saliency detection via a self-paced multiple-instance learning framework
-
Zhang, D., Meng, D., Han, J., Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 10.1109/TPAMI.2016.2567393.
-
(2017)
IEEE Trans. Pattern Anal. Mach. Intell.
-
-
Zhang, D.1
Meng, D.2
Han, J.3
-
38
-
-
77951191949
-
Analysis of multi-stage convex relaxation for sparse regularization
-
Zhang, T., Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11 (2010), 1081–1107.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1081-1107
-
-
Zhang, T.1
-
40
-
-
84960086094
-
Self-paced learning for matrix factorization
-
Zhao, Q., Meng, D.Y., Jiang, L., Xie, Q., Xu, Z.B., Hauptman, A., Self-paced learning for matrix factorization. Proceeding of American Association for Artificial Intelligence, 2015, 3196–3202.
-
(2015)
Proceeding of American Association for Artificial Intelligence
, pp. 3196-3202
-
-
Zhao, Q.1
Meng, D.Y.2
Jiang, L.3
Xie, Q.4
Xu, Z.B.5
Hauptman, A.6
|