메뉴 건너뛰기




Volumn 414, Issue , 2017, Pages 319-328

A theoretical understanding of self-paced learning

Author keywords

Curriculum learning; Multimedia event detection; Non convex regularized penalty; Self paced learning

Indexed keywords

DATA HANDLING; LEARNING SYSTEMS;

EID: 85020810893     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2017.05.043     Document Type: Article
Times cited : (147)

References (40)
  • 4
    • 57349174008 scopus 로고    scopus 로고
    • Enhancing sparsity by reweighted l1 minimization
    • Candès, E.J., Wakin, M.B., Boyd, S.P., Enhancing sparsity by reweighted l1 minimization. J. Fourier Anal. Appl. 14:5–6 (2008), 877–905.
    • (2008) J. Fourier Anal. Appl. , vol.14 , Issue.5-6 , pp. 877-905
    • Candès, E.J.1    Wakin, M.B.2    Boyd, S.P.3
  • 5
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96:456 (2001), 1348–1360.
    • (2001) J. Am. Stat. Assoc. , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 6
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman, J.H., Stochastic gradient boosting. Comput. Stat. Data Anal. 38:4 (2002), 367–378.
    • (2002) Comput. Stat. Data Anal. , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 7
    • 84897545592 scopus 로고    scopus 로고
    • A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
    • Gong, P., Zhang, C., Lu, Z., Huang, J., Ye, J., A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems. International Confenence on Machine Learning, 2013, 37–45.
    • (2013) International Confenence on Machine Learning , pp. 37-45
    • Gong, P.1    Zhang, C.2    Lu, Z.3    Huang, J.4    Ye, J.5
  • 8
    • 84913585680 scopus 로고    scopus 로고
    • Easy samples first: self-paced reranking for zeroexample multimedia search
    • Jiang, L., Meng, D., Mitamura, T., Hauptmann, A., Easy samples first: self-paced reranking for zeroexample multimedia search. ACM Multimedia, 2014, 547–556.
    • (2014) ACM Multimedia , pp. 547-556
    • Jiang, L.1    Meng, D.2    Mitamura, T.3    Hauptmann, A.4
  • 11
    • 84962835109 scopus 로고    scopus 로고
    • Exploiting feature and class relationships in video categorization with regularized deep neural networks
    • ArXiv preprint: 1502.07209.
    • Y.G. Jiang, Z. Wu, J. Wang, X. Xue, S.F. Chang, Exploiting feature and class relationships in video categorization with regularized deep neural networks, 2015b, ArXiv preprint: 1502.07209.
    • (2015)
    • Jiang, Y.G.1    Wu, Z.2    Wang, J.3    Xue, X.4    Chang, S.F.5
  • 12
    • 85030031936 scopus 로고    scopus 로고
    • On the global convergence of majorization minimization algorithms for nonconvex optimization problems
    • ArXiv preprint: 1504.07791v2.
    • Y. Kang, Z. Zhang, W. Li, On the global convergence of majorization minimization algorithms for nonconvex optimization problems, 2015, ArXiv preprint: 1504.07791v2.
    • (2015)
    • Kang, Y.1    Zhang, Z.2    Li, W.3
  • 17
    • 77950023906 scopus 로고    scopus 로고
    • Optimization transfer using surrogate objective functions
    • Lange, K., Hunter, D., Yang, I., Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9:1 (2000), 1–20.
    • (2000) J. Comput. Graph. Stat. , vol.9 , Issue.1 , pp. 1-20
    • Lange, K.1    Hunter, D.2    Yang, I.3
  • 18
    • 84904617585 scopus 로고    scopus 로고
    • Are all training examples equally valuable?
    • In arXiv preprint: 1311.6510
    • A. Lapedriza, H. Pirsiavash, Z. Bylinskii, A. Torralba, Are all training examples equally valuable?, 2013, In arXiv preprint: 1311.6510.
    • (2013)
    • Lapedriza, A.1    Pirsiavash, H.2    Bylinskii, Z.3    Torralba, A.4
  • 23
    • 84908024543 scopus 로고    scopus 로고
    • Relaxed sparse eigenvalue conditions for sparse estimation via non-convex regularized regression
    • Pan, Z., Zhang, C., Relaxed sparse eigenvalue conditions for sparse estimation via non-convex regularized regression. Pattern Recognit. 48:1 (2015), 231–243.
    • (2015) Pattern Recognit. , vol.48 , Issue.1 , pp. 231-243
    • Pan, Z.1    Zhang, C.2
  • 28
    • 26844582271 scopus 로고    scopus 로고
    • Parameter convergence for EM and MM algorithms
    • Vaida, F., Parameter convergence for EM and MM algorithms. Stat. Sin. 15:3 (2005), 831–840.
    • (2005) Stat. Sin. , vol.15 , Issue.3 , pp. 831-840
    • Vaida, F.1
  • 29
    • 85006098718 scopus 로고    scopus 로고
    • Efficient large scale video classification
    • ArXiv preprint: 1505.06250
    • B. Varadarajan, G. Toderici, S. Vijayanarasimhan, A. Natsev, Efficient large scale video classification, 2015, ArXiv preprint: 1505.06250.
    • (2015)
    • Varadarajan, B.1    Toderici, G.2    Vijayanarasimhan, S.3    Natsev, A.4
  • 31
    • 84908218252 scopus 로고    scopus 로고
    • Optimal computational and statistical rates of convergence for sparse nonconvex learning problems
    • Wang, Z., Liu, H., Zhang, T., Optimal computational and statistical rates of convergence for sparse nonconvex learning problems. Ann. Stat. 42 (2014), 2164–2201.
    • (2014) Ann. Stat. , vol.42 , pp. 2164-2201
    • Wang, Z.1    Liu, H.2    Zhang, T.3
  • 34
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • Zhang, C., Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38:2 (2010), 894–942.
    • (2010) Ann. Stat. , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.1
  • 35
    • 84871532743 scopus 로고    scopus 로고
    • A general theory of concave regularization for high-dimensional sparse estimation problems
    • Zhang, C., Zhang, T., A general theory of concave regularization for high-dimensional sparse estimation problems. Stat. Sci. 27:4 (2012), 576–593.
    • (2012) Stat. Sci. , vol.27 , Issue.4 , pp. 576-593
    • Zhang, C.1    Zhang, T.2
  • 36
    • 85020785481 scopus 로고    scopus 로고
    • Co-saliency detection via a self-paced multiple-instance learning framework
    • Zhang, D., Meng, D., Han, J., Co-saliency detection via a self-paced multiple-instance learning framework. International Conference on Computer Vision, 2015, 594–602.
    • (2015) International Conference on Computer Vision , pp. 594-602
    • Zhang, D.1    Meng, D.2    Han, J.3
  • 37
    • 85018479379 scopus 로고    scopus 로고
    • Co-saliency detection via a self-paced multiple-instance learning framework
    • Zhang, D., Meng, D., Han, J., Co-saliency detection via a self-paced multiple-instance learning framework. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 10.1109/TPAMI.2016.2567393.
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell.
    • Zhang, D.1    Meng, D.2    Han, J.3
  • 38
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • Zhang, T., Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11 (2010), 1081–1107.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1081-1107
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.