메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Self-taught object localization with deep networks

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; COMPUTER VISION; IMAGE RECOGNITION;

EID: 84977675045     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WACV.2016.7477688     Document Type: Conference Paper
Times cited : (144)

References (36)
  • 4
    • 84906309797 scopus 로고    scopus 로고
    • Bing: Binarized normed gradients for objectness estimation at 300fps
    • M. Cheng, Z. Zhang, W. Lin, and P. Torr. Bing: Binarized normed gradients for objectness estimation at 300fps. In IEEE CVPR, 2014.
    • (2014) IEEE CVPR
    • Cheng, M.1    Zhang, Z.2    Lin, W.3    Torr, P.4
  • 5
    • 85044516828 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In IEEE CVPR, 2015.
    • (2015) IEEE CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 9
    • 50949133669 scopus 로고    scopus 로고
    • Liblinear: A library for large linear classification
    • R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblinear: A library for large linear classification. JMLR, 9, 2008.
    • (2008) JMLR , vol.9
    • Fan, R.1    Chang, K.2    Hsieh, C.3    Wang, X.4    Lin, C.5
  • 11
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • September
    • P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. Int. J. Comput. Vision, 59 (2): 167-181, September 2004.
    • (2004) Int. J. Comput. Vision , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 12
    • 84940737052 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE CVPR, 2014.
    • (2014) IEEE CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 14
    • 85081111493 scopus 로고    scopus 로고
    • How good are detection proposals, really
    • J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, reallyIn BMVC, 2014.
    • (2014) BMVC
    • Hosang, J.1    Benenson, R.2    Schiele, B.3
  • 16
    • 84906508364 scopus 로고    scopus 로고
    • Geodesic object proposals
    • P. Krähenbühl and V. Koltun. Geodesic object proposals. In ECCV 2014, pages 725-739. 2014.
    • (2014) ECCV , pp. 725-739
    • Krähenbühl, P.1    Koltun, V.2
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105. 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84973861966 scopus 로고    scopus 로고
    • Deepbox: Learning objectness with convolutional networks
    • W. Kuo, B. Hariharan, and J. Malik. Deepbox: learning objectness with convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Kuo, W.1    Hariharan, B.2    Malik, J.3
  • 20
    • 84977648895 scopus 로고    scopus 로고
    • What has my classifier learned. Visualizing the classification rules of bag-of-feature model by support region detection
    • L. Liu and L. Wang. What has my classifier learnedvisualizing the classification rules of bag-of-feature model by support region detection. In IEEE CVPR, 2012.
    • (2012) IEEE CVPR
    • Liu, L.1    Wang, L.2
  • 21
    • 84898781017 scopus 로고    scopus 로고
    • Prime object proposals with randomized prim's algorithm
    • IEEE
    • S. Manen, M. Guillaumin, and L. Van Gool. Prime object proposals with randomized prim's algorithm. In IEEE ICCV, pages 2536-2543. IEEE, 2013.
    • (2013) IEEE ICCV , pp. 2536-2543
    • Manen, S.1    Guillaumin, M.2    Van Gool, L.3
  • 22
    • 84932160299 scopus 로고    scopus 로고
    • Deep neural networks are easily fooled: High confidence predictions for unrecognizable images
    • A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In IEEE CVPR, 2015.
    • (2015) IEEE CVPR
    • Nguyen, A.1    Yosinski, J.2    Clune, J.3
  • 23
    • 84977665662 scopus 로고    scopus 로고
    • Is object localization for free-weakly-supervised learning with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free-weakly-supervised learning with convolutional neural networks. In IEEE CVPR, 2015.
    • (2015) IEEE CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 25
    • 84856655925 scopus 로고    scopus 로고
    • Learning a category independent object detection cascade
    • E. Rahtu, J. Kannala, and M. Blaschko. Learning a category independent object detection cascade. In IEEE ICCV, pages 1052-1059, 2011.
    • (2011) IEEE ICCV , pp. 1052-1059
    • Rahtu, E.1    Kannala, J.2    Blaschko, M.3
  • 26
    • 84911429815 scopus 로고    scopus 로고
    • Generating object segmentation proposals using global and local search
    • IEEE
    • P. Rantalankila, J. Kannala, and E. Rahtu. Generating object segmentation proposals using global and local search. In IEEE CVPR, pages 2417-2424. IEEE, 2014.
    • (2014) IEEE CVPR , pp. 2417-2424
    • Rantalankila, P.1    Kannala, J.2    Rahtu, E.3
  • 27
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 28
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR Workshop, 2014.
    • (2014) ICLR Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 29
    • 84898989329 scopus 로고    scopus 로고
    • Deep neural networks for object detection
    • C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection. In NIPS, pages 2553-2561, 2013.
    • (2013) NIPS , pp. 2553-2561
    • Szegedy, C.1    Toshev, A.2    Erhan, D.3
  • 31
    • 84906334472 scopus 로고    scopus 로고
    • Weakly supervised object localization with latent category learning
    • C. Wang, W. Ren, K. Huang, and T. Tan. Weakly supervised object localization with latent category learning. In ECCV 2014, pages 431-445, 2014.
    • (2014) ECCV 2014 , pp. 431-445
    • Wang, C.1    Ren, W.2    Huang, K.3    Tan, T.4
  • 33
    • 84937902251 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional neural networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 34
    • 84911443783 scopus 로고    scopus 로고
    • Panda: Pose aligned networks for deep attribute modeling
    • N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. Panda: Pose aligned networks for deep attribute modeling. In IEEE CVPR, pages 1637-1644, 2014.
    • (2014) IEEE CVPR , pp. 1637-1644
    • Zhang, N.1    Paluri, M.2    Ranzato, M.3    Darrell, T.4    Bourdev, L.5
  • 36
    • 84906489617 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV 2014, pages 391-405. 2014.
    • (2014) ECCV 2014 , pp. 391-405
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.