-
1
-
-
84938679411
-
-
Ramakrishnan et al.
-
Ramakrishnan et al. Sci. Data 2014, 1, 140022
-
(2014)
Sci. Data
, vol.1
, pp. 140022
-
-
-
2
-
-
10644250257
-
Inhomogeneous Electron Gas
-
Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas Phys. Rev. 1964, 136, B864 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. B864
-
-
Hohenberg, P.1
Kohn, W.2
-
3
-
-
0042113153
-
Self-Consistent Equations Including Exchange and Correlation Effects
-
Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects Phys. Rev. 1965, 140, A1133 10.1103/PhysRev.140.A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. A1133
-
-
Kohn, W.1
Sham, L.J.2
-
4
-
-
84860123425
-
Perspective on density functional theory
-
Burke, K. Perspective on density functional theory J. Chem. Phys. 2012, 136, 150901 10.1063/1.4704546
-
(2012)
J. Chem. Phys.
, vol.136
, pp. 150901
-
-
Burke, K.1
-
6
-
-
84862907865
-
Challenges for Density Functional Theory
-
Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory Chem. Rev. 2012, 112, 289-320 10.1021/cr200107z
-
(2012)
Chem. Rev.
, vol.112
, pp. 289-320
-
-
Cohen, A.J.1
Mori-Sánchez, P.2
Yang, W.3
-
7
-
-
84925781492
-
A Case Study of the Mechanism of Alcohol-Mediated Morita Baylis-Hillman Reactions. The Importance of Experimental Observations
-
Plata, R. E.; Singleton, D. A. A Case Study of the Mechanism of Alcohol-Mediated Morita Baylis-Hillman Reactions. The Importance of Experimental Observations J. Am. Chem. Soc. 2015, 137, 3811-3826 10.1021/ja5111392
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 3811-3826
-
-
Plata, R.E.1
Singleton, D.A.2
-
8
-
-
85009265616
-
Density functional theory is straying from the path toward the exact functional
-
Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density functional theory is straying from the path toward the exact functional Science 2017, 355, 49-52 10.1126/science.aah5975
-
(2017)
Science
, vol.355
, pp. 49-52
-
-
Medvedev, M.G.1
Bushmarinov, I.S.2
Sun, J.3
Perdew, J.P.4
Lyssenko, K.A.5
-
9
-
-
84929331654
-
Big Data Meets Quantum Chemistry Approximations: The I"-Machine Learning Approach
-
Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Big Data Meets Quantum Chemistry Approximations: The I"-Machine Learning Approach J. Chem. Theory Comput. 2015, 11, 2087-2096 10.1021/acs.jctc.5b00099
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 2087-2096
-
-
Ramakrishnan, R.1
Dral, P.O.2
Rupp, M.3
Von Lilienfeld, O.A.4
-
10
-
-
84938679411
-
Quantum chemistry structures and properties of 134 kilo molecules
-
Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules Sci. Data 2014, 1, 140022 10.1038/sdata.2014.22
-
(2014)
Sci. Data
, vol.1
, pp. 140022
-
-
Ramakrishnan, R.1
Dral, P.O.2
Rupp, M.3
Von Lilienfeld, O.A.4
-
11
-
-
84869987352
-
Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17
-
Ruddigkeit, L.; van Deursen, R.; Blum, L. C.; Reymond, J.-L. Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 J. Chem. Inf. Model. 2012, 52, 2864-2875 10.1021/ci300415d
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2864-2875
-
-
Ruddigkeit, L.1
Van Deursen, R.2
Blum, L.C.3
Reymond, J.-L.4
-
12
-
-
84994037361
-
Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity
-
Huang, B.; von Lilienfeld, O. A. Communication: Understanding molecular representations in machine learning: The role of uniqueness and target similarity J. Chem. Phys. 2016, 145, 161102 10.1063/1.4964627
-
(2016)
J. Chem. Phys.
, vol.145
, pp. 161102
-
-
Huang, B.1
Von Lilienfeld, O.A.2
-
13
-
-
84935014439
-
Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
-
Hansen, K.; Biegler, F.; Ramakrishnan, R.; Pronobis, W.; von Lilienfeld, O. A.; Müller, K.-R.; Tkatchenko, A. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space J. Phys. Chem. Lett. 2015, 6, 2326-2331 10.1021/acs.jpclett.5b00831
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 2326-2331
-
-
Hansen, K.1
Biegler, F.2
Ramakrishnan, R.3
Pronobis, W.4
Von Lilienfeld, O.A.5
Müller, K.-R.6
Tkatchenko, A.7
-
14
-
-
84933511100
-
Many Molecular Properties from One Kernel in Chemical Space
-
Ramakrishnan, R.; von Lilienfeld, O. A. Many Molecular Properties from One Kernel in Chemical Space Chimia 2015, 69, 182-186 10.2533/chimia.2015.182
-
(2015)
Chimia
, vol.69
, pp. 182-186
-
-
Ramakrishnan, R.1
Von Lilienfeld, O.A.2
-
15
-
-
84856512353
-
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
-
Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning Phys. Rev. Lett. 2012, 108, 058301 10.1103/PhysRevLett.108.058301
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 058301
-
-
Rupp, M.1
Tkatchenko, A.2
Müller, K.-R.3
Von Lilienfeld, O.A.4
-
17
-
-
84936800622
-
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
-
von Lilienfeld, O. A.; Ramakrishnan, R.; Rupp, M.; Knoll, A. Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties Int. J. Quantum Chem. 2015, 115, 1084-1093 10.1002/qua.24912
-
(2015)
Int. J. Quantum Chem.
, vol.115
, pp. 1084-1093
-
-
Von Lilienfeld, O.A.1
Ramakrishnan, R.2
Rupp, M.3
Knoll, A.4
-
18
-
-
84937829970
-
Accelerated materials property predictions and design using motif-based fingerprints
-
Huan, T. D.; Mannodi-Kanakkithodi, A.; Ramprasad, R. Accelerated materials property predictions and design using motif-based fingerprints Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92, 014106 10.1103/PhysRevB.92.014106
-
(2015)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.92
, pp. 014106
-
-
Huan, T.D.1
Mannodi-Kanakkithodi, A.2
Ramprasad, R.3
-
19
-
-
84878571921
-
On representing chemical environments
-
Bartók, A. P.; Kondor, R.; Csányi, G. On representing chemical environments Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 184115 10.1103/PhysRevB.87.184115
-
(2013)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.87
, pp. 184115
-
-
Bartók, A.P.1
Kondor, R.2
Csányi, G.3
-
20
-
-
84969944517
-
Comparing molecules and solids across structural and alchemical space
-
De, S.; Bartók, A. P.; Csányi, G.; Ceriotti, M. Comparing molecules and solids across structural and alchemical space Phys. Chem. Chem. Phys. 2016, 18, 13754-13769 10.1039/C6CP00415F
-
(2016)
Phys. Chem. Chem. Phys.
, vol.18
, pp. 13754-13769
-
-
De, S.1
Bartók, A.P.2
Csányi, G.3
Ceriotti, M.4
-
22
-
-
85016436037
-
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
-
Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost Chem. Sci. 2017, 8, 3192-3203 10.1039/C6SC05720A
-
(2017)
Chem. Sci.
, vol.8
, pp. 3192-3203
-
-
Smith, J.S.1
Isayev, O.2
Roitberg, A.E.3
-
23
-
-
85009110385
-
Quantum-chemical insights from deep tensor neural networks
-
Schütt, K. T.; Arbabzadah, F.; Chmiela, S.; Müller, K. R.; Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks Nat. Commun. 2017, 8, 13890 10.1038/ncomms13890
-
(2017)
Nat. Commun.
, vol.8
, pp. 13890
-
-
Schütt, K.T.1
Arbabzadah, F.2
Chmiela, S.3
Müller, K.R.4
Tkatchenko, A.5
-
24
-
-
84929191567
-
Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations
-
Dral, P. O.; von Lilienfeld, O. A.; Thiel, W. Machine Learning of Parameters for Accurate Semiempirical Quantum Chemical Calculations J. Chem. Theory Comput. 2015, 11, 2120-2125 10.1021/acs.jctc.5b00141
-
(2015)
J. Chem. Theory Comput.
, vol.11
, pp. 2120-2125
-
-
Dral, P.O.1
Von Lilienfeld, O.A.2
Thiel, W.3
-
25
-
-
0034389977
-
Orthogonalization corrections for semiempirical methods
-
Weber, W.; Thiel, W. Orthogonalization corrections for semiempirical methods Theor. Chem. Acc. 2000, 103, 495-506 10.1007/s002149900083
-
(2000)
Theor. Chem. Acc.
, vol.103
, pp. 495-506
-
-
Weber, W.1
Thiel, W.2
-
26
-
-
84960448621
-
Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties
-
Dral, P. O.; Wu, X.; Spörkel, L.; Koslowski, A.; Thiel, W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties J. Chem. Theory Comput. 2016, 12, 1097-1120 10.1021/acs.jctc.5b01047
-
(2016)
J. Chem. Theory Comput.
, vol.12
, pp. 1097-1120
-
-
Dral, P.O.1
Wu, X.2
Spörkel, L.3
Koslowski, A.4
Thiel, W.5
-
27
-
-
84882415695
-
Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
-
Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Scheffler, M.; von Lilienfeld, O. A.; Tkatchenko, A.; Müller, K.-R. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies J. Chem. Theory Comput. 2013, 9, 3404-3419 10.1021/ct400195d
-
(2013)
J. Chem. Theory Comput.
, vol.9
, pp. 3404-3419
-
-
Hansen, K.1
Montavon, G.2
Biegler, F.3
Fazli, S.4
Rupp, M.5
Scheffler, M.6
Von Lilienfeld, O.A.7
Tkatchenko, A.8
Müller, K.-R.9
-
28
-
-
84983438115
-
Molecular Graph Convolutions: Moving beyond Fingerprints
-
Kearnes, S.; McCloskey, K.; Berndl, M.; Pande, V.; Riley, P. Molecular Graph Convolutions: Moving Beyond Fingerprints J. Comput.-Aided Mol. Des. 2016, 30, 595-608 10.1007/s10822-016-9938-8
-
(2016)
J. Comput.-Aided Mol. Des.
, vol.30
, pp. 595-608
-
-
Kearnes, S.1
McCloskey, K.2
Berndl, M.3
Pande, V.4
Riley, P.5
-
30
-
-
0000109748
-
Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation
-
Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation J. Chem. Phys. 1997, 106, 1063-1079 10.1063/1.473182
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 1063-1079
-
-
Curtiss, L.A.1
Raghavachari, K.2
Redfern, P.C.3
Pople, J.A.4
-
31
-
-
84901257776
-
Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities
-
Hickey, A. L.; Rowley, C. N. Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities J. Phys. Chem. A 2014, 118, 3678-3687 10.1021/jp502475e
-
(2014)
J. Phys. Chem. A
, vol.118
, pp. 3678-3687
-
-
Hickey, A.L.1
Rowley, C.N.2
-
32
-
-
0033553133
-
What do the Kohn-Sham orbitals and eigenvalues mean?
-
Stowasser, R.; Hoffmann, R. What do the Kohn-Sham orbitals and eigenvalues mean? J. Am. Chem. Soc. 1999, 121, 3414 10.1021/ja9826892
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 3414
-
-
Stowasser, R.1
Hoffmann, R.2
-
33
-
-
7544222355
-
Harmonic Vibrational Frequencies: Scaling Factors for HF, B3LYP, and MP2Methods in Combination with Correlation Consistent Basis Sets
-
Sinha, P.; Boesch, S. E.; Gu, C.; Wheeler, R. A.; Wilson, A. K. Harmonic Vibrational Frequencies: Scaling Factors for HF, B3LYP, and MP2Methods in Combination with Correlation Consistent Basis Sets J. Phys. Chem. A 2004, 108, 9213-9217 10.1021/jp048233q
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 9213-9217
-
-
Sinha, P.1
Boesch, S.E.2
Gu, C.3
Wheeler, R.A.4
Wilson, A.K.5
-
34
-
-
0008882315
-
The Ratio of the Mean Deviation to the Standard Deviation as a Test of Normality
-
Geary, R. C. The Ratio of the Mean Deviation to the Standard Deviation as a Test of Normality Biometrika 1935, 27, 310-332 10.1093/biomet/27.3-4.310
-
(1935)
Biometrika
, vol.27
, pp. 310-332
-
-
Geary, R.C.1
-
35
-
-
34250311276
-
Calculation of Entropy and Heat Capacity of Organic Compounds in the Gas Phase. Evaluation of a Consistent Method without Adjustable Parameters. Applications to Hydrocarbons
-
DeTar, D. F. Calculation of Entropy and Heat Capacity of Organic Compounds in the Gas Phase. Evaluation of a Consistent Method without Adjustable Parameters. Applications to Hydrocarbons J. Phys. Chem. A 2007, 111, 4464-4477 10.1021/jp066312r
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 4464-4477
-
-
Detar, D.F.1
-
37
-
-
85034064461
-
-
arXiv preprint arXiv:1706.00179.
-
Bartok, A. P.; De, S.; Poelking, C.; Bernstein, N.; Kermode, J.; Csanyi, G.; Ceriotti, M. Machine Learning Unifies the Modelling of Materials and Molecules. arXiv preprint arXiv:1706.00179, 2017.
-
(2017)
Machine Learning Unifies the Modelling of Materials and Molecules
-
-
Bartok, A.P.1
De, S.2
Poelking, C.3
Bernstein, N.4
Kermode, J.5
Csanyi, G.6
Ceriotti, M.7
-
38
-
-
0042041206
-
UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
-
Rappe, A. K.; Casewit, C. J.; Colwell, K. S., III; Goddard, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations J. Am. Chem. Soc. 1992, 114, 10024-10035 10.1021/ja00051a040
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 10024-10035
-
-
Rappe, A.K.1
Casewit, C.J.2
Colwell, K.S.3
Goddard, W.A.4
Skiff, W.M.5
-
39
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-connectivity fingerprints J. Chem. Inf. Model. 2010, 50, 742-754 10.1021/ci100050t
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
40
-
-
84870987376
-
Automated design of ligands to polypharmacological profiles
-
Besnard, J.; Ruda, G. F.; Setola, V.; Abecassis, K.; Rodriguiz, R. M.; Huang, X.-P.; Norval, S.; Sassano, M. F.; Shin, A. I.; Webster, L. A.; Simeons, F. R. C.; Stojanovski, L.; Prat, A.; Seidah, N. G.; Constam, D. B.; Bickerton, G. R.; Read, K. D.; Wetsel, W. C.; Gilbert, I. H.; Roth, B. L.; Hopkins, A. L. Automated design of ligands to polypharmacological profiles Nature 2012, 492, 215-220 10.1038/nature11691
-
(2012)
Nature
, vol.492
, pp. 215-220
-
-
Besnard, J.1
Ruda, G.F.2
Setola, V.3
Abecassis, K.4
Rodriguiz, R.M.5
Huang, X.-P.6
Norval, S.7
Sassano, M.F.8
Shin, A.I.9
Webster, L.A.10
Simeons, F.R.C.11
Stojanovski, L.12
Prat, A.13
Seidah, N.G.14
Constam, D.B.15
Bickerton, G.R.16
Read, K.D.17
Wetsel, W.C.18
Gilbert, I.H.19
Roth, B.L.20
Hopkins, A.L.21
more..
-
41
-
-
84862510972
-
Large-scale prediction and testing of drug activity on side-effect targets
-
Lounkine, E.; Keiser, M. J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J. L.; Lavan, P.; Weber, E.; Doak, A. K.; Côté, S.; Shoichet, B. K.; Urban, L. Large-scale prediction and testing of drug activity on side-effect targets Nature 2012, 486, 361-367 10.1038/nature11159
-
(2012)
Nature
, vol.486
, pp. 361-367
-
-
Lounkine, E.1
Keiser, M.J.2
Whitebread, S.3
Mikhailov, D.4
Hamon, J.5
Jenkins, J.L.6
Lavan, P.7
Weber, E.8
Doak, A.K.9
Côté, S.10
Shoichet, B.K.11
Urban, L.12
-
42
-
-
84875466221
-
A Ring Distortion Strategy to Construct Stereochemically Complex and Structurally Diverse Compounds from Natural Products
-
Huigens, R. W., III; Morrison, K. C.; Hicklin, R. W.; Flood, T. A., Jr; Richter, M. F.; Hergenrother, P. J. A Ring Distortion Strategy to Construct Stereochemically Complex and Structurally Diverse Compounds from Natural Products Nat. Chem. 2013, 5, 195 10.1038/nchem.1549
-
(2013)
Nat. Chem.
, vol.5
, pp. 195
-
-
Huigens, R.W.1
Morrison, K.C.2
Hicklin, R.W.3
Flood, T.A.4
Richter, M.F.5
Hergenrother, P.J.6
-
44
-
-
0038579386
-
The Signature Molecular Descriptor. 1. Using Extended Valence Sequences in QSAR and QSPR Studies
-
Faulon, J.-L.; Visco, D. P., Jr; Pophale, R. S. The Signature Molecular Descriptor. 1. Using Extended Valence Sequences in QSAR and QSPR Studies J. Chem. Inf. Comp. Sci. 2003, 43, 707 10.1021/ci020345w
-
(2003)
J. Chem. Inf. Comp. Sci.
, vol.43
, pp. 707
-
-
Faulon, J.-L.1
Visco, D.P.2
Pophale, R.S.3
-
45
-
-
0036010702
-
Developing a methodology for an inverse quantitative structure activity relationship using the signature molecular descriptor
-
Visco, J.; Pophale, R. S.; Rintoul, M. D.; Faulon, J. L. Developing a methodology for an inverse quantitative structure activity relationship using the signature molecular descriptor J. Mol. Graphics Modell. 2002, 20, 429-438 10.1016/S1093-3263(01)00144-9
-
(2002)
J. Mol. Graphics Modell.
, vol.20
, pp. 429-438
-
-
Visco, J.1
Pophale, R.S.2
Rintoul, M.D.3
Faulon, J.L.4
-
46
-
-
80053512597
-
Open Babel: An open chemical toolbox
-
O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An open chemical toolbox J. Cheminform. 2011, 3, 33 10.1186/1758-2946-3-33
-
(2011)
J. Cheminform.
, vol.3
, pp. 33
-
-
O'Boyle, N.M.1
Banck, M.2
James, C.A.3
Morley, C.4
Vandermeersch, T.5
Hutchison, G.R.6
-
48
-
-
85020766200
-
-
arXiv preprint arXiv:1702.05532.
-
Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.; Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Fast machine learning models of electronic and energetic properties consistently reach approximation errors better than DFT accuracy. arXiv preprint arXiv:1702.05532, 2017.
-
(2017)
Fast Machine Learning Models of Electronic and Energetic Properties Consistently Reach Approximation Errors Better Than DFT Accuracy
-
-
Faber, F.A.1
Hutchison, L.2
Huang, B.3
Gilmer, J.4
Schoenholz, S.S.5
Dahl, G.E.6
Vinyals, O.7
Kearnes, S.8
Riley, P.F.9
Von Lilienfeld, O.A.10
-
49
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller, K.-R.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B. An introduction to kernel-based learning algorithms IEEE transactions on neural networks 2001, 12, 181-201 10.1109/72.914517
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
50
-
-
0004094721
-
-
MIT Press.
-
Schölkopf, B.; Smola, A. J. Learning with kernels: support vector machines, regularization, optimization, and beyond; MIT Press: 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
51
-
-
84939617755
-
Kernel Ridge Regression
-
In; Schölkopf, B. Luo, Z. Vovk, V. Springer Berlin Heidelberg: Berlin, Heidelberg, pp; DOI.
-
Vovk, V. Kernel Ridge Regression. In Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik; Schölkopf, B.; Luo, Z.; Vovk, V., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 105-116; DOI: 10.1007/978-3-642-41136-6-11.
-
(2013)
Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik
, pp. 105-116
-
-
Vovk, V.1
-
52
-
-
0003684449
-
-
2nd ed. Springer: New York, DOI.
-
Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, 2011; DOI: 10.1007/978-0-387-84858-7.
-
(2011)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
53
-
-
0033906922
-
Ridge Regression Biased Estimation for Nonorthogonal Problems
-
Hoerl, A. E.; Kennard, R. W. Ridge Regression Biased Estimation for Nonorthogonal Problems Technometrics 2000, 42, 80-86 10.1080/00401706.2000.10485983
-
(2000)
Technometrics
, vol.42
, pp. 80-86
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
54
-
-
80555140075
-
Scikit-learn: Machine Learning in Python
-
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. scikit-learn: Machine Learning in Python J. Mach. Learn. Res. 2011, 12, 2825-2830
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
55
-
-
0003611509
-
-
Springer-Verlag New York, Inc. Secaucus, NJ, USA, DOI.
-
Neal, R. M. Bayesian Learning for Neural Networks; Springer-Verlag New York, Inc.: Secaucus, NJ, USA, 1996; DOI: 10.1007/978-1-4612-0745-0.
-
(1996)
Bayesian Learning for Neural Networks
-
-
Neal, R.M.1
-
56
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H.; Hastie, T. Regularization and variable selection via the elastic net J. R. Stat. Soc. Series. B Stat. Methodol. 2005, 67, 301-320 10.1111/j.1467-9868.2005.00503.x
-
(2005)
J. R. Stat. Soc. Series. B Stat. Methodol.
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
57
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests Machine learning 2001, 45, 5-32 10.1023/A:1010933404324
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
58
-
-
84965159799
-
Convolutional Networks on Graphs for Learning Molecular Fingerprints
-
pp.
-
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning Molecular Fingerprints. Advances in Neural Information Processing Systems; 2015; pp 2215-2223.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2215-2223
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
59
-
-
84942597150
-
Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Bandit Optimization
-
Desautels, T.; Krause, A.; Burdick, J. W. Parallelizing Exploration-Exploitation Tradeoffs in Gaussian Process Bandit Optimization J. Mach. Learn. Res. 2014, 15, 4053-4103
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 4053-4103
-
-
Desautels, T.1
Krause, A.2
Burdick, J.W.3
-
60
-
-
85034100039
-
-
Google HyperTune. (accessed).
-
Google HyperTune. https://cloud.google.com/ml/ (accessed 2016).
-
(2016)
-
-
-
61
-
-
36348972808
-
Basis Set Limit CCSD(T) Harmonic Vibrational Frequencies
-
Tew, D. P.; Klopper, W.; Heckert, M.; Gauss, J. Basis Set Limit CCSD(T) Harmonic Vibrational Frequencies J. Phys. Chem. A 2007, 111, 11242-11248 10.1021/jp070851u
-
(2007)
J. Phys. Chem. A
, vol.111
, pp. 11242-11248
-
-
Tew, D.P.1
Klopper, W.2
Heckert, M.3
Gauss, J.4
-
62
-
-
0030188747
-
A numerical study on learning curves in stochastic multilayer feedforward networks
-
Müller, K.-R.; Finke, M.; Murata, N.; Schulten, K.; Amari, S. A numerical study on learning curves in stochastic multilayer feedforward networks Neural Comput. 1996, 8, 1085-1106 10.1162/neco.1996.8.5.1085
-
(1996)
Neural Comput.
, vol.8
, pp. 1085-1106
-
-
Müller, K.-R.1
Finke, M.2
Murata, N.3
Schulten, K.4
Amari, S.5
-
64
-
-
85045254838
-
-
Proceedings of the 34nd International Conference on Machine Learning, ICML 2017.
-
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. Proceedings of the 34nd International Conference on Machine Learning, ICML 2017, 2017.
-
(2017)
Neural Message Passing for Quantum Chemistry
-
-
Gilmer, J.1
Schoenholz, S.S.2
Riley, P.F.3
Vinyals, O.4
Dahl, G.E.5
-
65
-
-
84984763696
-
Chemical space
-
Kirkpatrick, P.; Ellis, C. Chemical space Nature 2004, 432, 823 10.1038/432823a
-
(2004)
Nature
, vol.432
, pp. 823
-
-
Kirkpatrick, P.1
Ellis, C.2
|