메뉴 건너뛰기




Volumn , Issue , 2016, Pages

Gated graph sequence neural networks

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHIC METHODS; SEMANTICS;

EID: 85083951493     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1760)

References (34)
  • 1
    • 85051665664 scopus 로고
    • A learning rule for asynchronous perceptrons with feedback in a combinatorial environment
    • IEEE Press
    • Almeida, Luis B. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In Artificial neural networks, pp. 102–111. IEEE Press, 1990.
    • (1990) Artificial Neural Networks , pp. 102-111
    • Almeida, L.B.1
  • 2
    • 84959933549 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio, Yoshua. Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473, 2014.
    • (2014) CoRR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 3
    • 84894902026 scopus 로고    scopus 로고
    • From machine learning to machine reasoning
    • Bottou, Léon. From machine learning to machine reasoning. Machine learning, 94(2):133–149, 2014.
    • (2014) Machine Learning , vol.94 , Issue.2 , pp. 133-149
    • Bottou, L.1
  • 10
    • 0029727454 scopus 로고    scopus 로고
    • Learning task-dependent distributed representations by backpropagation through structure
    • Goller, Christoph and Kuchler, Andreas. Learning task-dependent distributed representations by backpropagation through structure. In IEEE International Conference on Neural Networks, volume 1, pp. 347–352. IEEE, 1996.
    • (1996) IEEE International Conference on Neural Networks , vol.1 , pp. 347-352
    • Goller, C.1    Kuchler, A.2
  • 14
    • 84945708698 scopus 로고
    • An axiomatic basis for computer programming
    • Hoare, Charles Antony Richard. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–580, 1969.
    • (1969) Communications of the ACM , vol.12 , Issue.10 , pp. 576-580
    • Hoare, C.A.R.1
  • 18
    • 84880542260 scopus 로고    scopus 로고
    • Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
    • Lusci, Alessandro, Pollastri, Gianluca, and Baldi, Pierre. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model, 2013.
    • (2013) J Chem Inf Model
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 19
    • 63049119992 scopus 로고    scopus 로고
    • Neural network for graphs: A contextual constructive approach
    • Micheli, Alessio. Neural network for graphs: A contextual constructive approach. IEEE Transactions on Neural Networks, 20(3):498–511, 2009.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.3 , pp. 498-511
    • Micheli, A.1
  • 22
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda, Fernando J. Generalization of back-propagation to recurrent neural networks. Physical review letters, 59(19):2229, 1987.
    • (1987) Physical Review Letters , vol.59 , Issue.19 , pp. 2229
    • Pineda, F.J.1
  • 28
    • 0031145983 scopus 로고    scopus 로고
    • Supervised neural networks for the classification of structures
    • Sperduti, Alessandro and Starita, Antonina. Supervised neural networks for the classification of structures. IEEE Transactions on Neural Networks, 8(3):714–735, 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 714-735
    • Sperduti, A.1    Starita, A.2
  • 29
    • 84862282438 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • Stoyanov, Veselin, Ropson, Alexander, and Eisner, Jason. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In International Conference on Artificial Intelligence and Statistics, pp. 725–733, 2011.
    • (2011) International Conference on Artificial Intelligence and Statistics , pp. 725-733
    • Stoyanov, V.1    Ropson, A.2    Eisner, J.3
  • 32
    • 79958846424 scopus 로고    scopus 로고
    • Neural networks for relational learning: An experimental comparison
    • Uwents, Werner, Monfardini, Gabriele, Blockeel, Hendrik, Gori, Marco, and Scarselli, Franco. Neural networks for relational learning: an experimental comparison. Machine Learning, 82(3):315–349, 2011.
    • (2011) Machine Learning , vol.82 , Issue.3 , pp. 315-349
    • Uwents, W.1    Monfardini, G.2    Blockeel, H.3    Gori, M.4    Scarselli, F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.