메뉴 건너뛰기




Volumn 549, Issue 7671, 2017, Pages 219-226

Corrigendum: The 4D nucleome project (Nature (2017) 549 (219-226) DOI: 10.1038/nature23884);The 4D nucleome project

(13)  Dekker, Job a   Belmont, Andrew S b   Guttman, Mitchell c   Leshyk, Victor O d   Lis, John T e   Lomvardas, Stavros f   Mirny, Leonid A g   O'Shea, Clodagh C h   Park, Peter J i   Ren, Bing j   Ritland Politz, Joan C k   Shendure, Jay l   Zhong, Sheng d  


Author keywords

[No Author keywords available]

Indexed keywords

BIOPHYSICS; CELLS AND CELL COMPONENTS; EXPERIMENTAL STUDY; GENE EXPRESSION; GENOME; GENOMICS; MODEL VALIDATION;

EID: 85030772716     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature24667     Document Type: Erratum
Times cited : (492)

References (101)
  • 1
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Project Consortium
    • ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
    • (2012) Nature , vol.489 , pp. 57-74
  • 2
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium et al
    • Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330 (2015).
    • (2015) Nature , vol.518 , pp. 317-330
  • 3
    • 84995912090 scopus 로고    scopus 로고
    • The international human epigenome consortium: A blueprint for scientific collaboration and discovery
    • International Human Epigenome Consortium & Hirst, M
    • Stunnenberg, H. G., International Human Epigenome Consortium & Hirst, M. The international human epigenome consortium: a blueprint for scientific collaboration and discovery. Cell 167, 1145-1149 (2016).
    • (2016) Cell , vol.167 , pp. 1145-1149
    • Stunnenberg, H.G.1
  • 4
    • 24644519490 scopus 로고    scopus 로고
    • The transcriptional landscape of the mammalian genome
    • The FANTOM Consortium et al
    • The FANTOM Consortium et al. The transcriptional landscape of the mammalian genome. Science 309, 1559-1563 (2005).
    • (2005) Science , vol.309 , pp. 1559-1563
  • 5
    • 0036923833 scopus 로고    scopus 로고
    • Looping and interaction between hypersensitive sites in the active ?-globin locus
    • Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active ?-globin locus. Mol. Cell 10, 1453-1465 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1453-1465
    • Tolhuis, B.1    Palstra, R.J.2    Splinter, E.3    Grosveld, F.4    De Laat, W.5
  • 6
    • 84951567954 scopus 로고    scopus 로고
    • CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription
    • Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611-1627 (2015).
    • (2015) Cell , vol.163 , pp. 1611-1627
    • Tang, Z.1
  • 7
    • 84908439526 scopus 로고    scopus 로고
    • Reactivation of developmentally silenced globin genes by forced chromatin looping
    • Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849-860 (2014).
    • (2014) Cell , vol.158 , pp. 849-860
    • Deng, W.1
  • 8
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948-951 (2008).
    • (2008) Nature , vol.453 , pp. 948-951
    • Guelen, L.1
  • 9
    • 84911478490 scopus 로고    scopus 로고
    • Topologically associating domains are stable units of replication-timing regulation
    • Pope, B. D. et al. Topologically associating domains are stable units of replication-timing regulation. Nature 515, 402-405 (2014).
    • (2014) Nature , vol.515 , pp. 402-405
    • Pope, B.D.1
  • 10
    • 84865822182 scopus 로고    scopus 로고
    • Systematic localization of common disease-associated variation in regulatory DNA
    • Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-1195 (2012).
    • (2012) Science , vol.337 , pp. 1190-1195
    • Maurano, M.T.1
  • 11
    • 0038054340 scopus 로고    scopus 로고
    • Spatial proximity of translocation-prone gene loci in human lymphomas
    • Roix, J. J., McQueen, P. G., Munson, P. J., Parada, L. A. & Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 34, 287-291 (2003).
    • (2003) Nat. Genet. , vol.34 , pp. 287-291
    • Roix, J.J.1    McQueen, P.G.2    Munson, P.J.3    Parada, L.A.4    Misteli, T.5
  • 12
    • 84862778059 scopus 로고    scopus 로고
    • Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
    • Zhang, Y. et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908-921 (2012).
    • (2012) Cell , vol.148 , pp. 908-921
    • Zhang, Y.1
  • 13
    • 0035316574 scopus 로고    scopus 로고
    • Chromosome territories, nuclear architecture and gene regulation in mammalian cells
    • Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292-301 (2001).
    • (2001) Nat. Rev. Genet. , vol.2 , pp. 292-301
    • Cremer, T.1    Cremer, C.2
  • 14
    • 84884294269 scopus 로고    scopus 로고
    • The spatial organization of the human genome
    • Bickmore, W. A. The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet. 14, 67-84 (2013).
    • (2013) Annu. Rev. Genomics Hum. Genet. , vol.14 , pp. 67-84
    • Bickmore, W.A.1
  • 15
    • 0037083376 scopus 로고    scopus 로고
    • Capturing chromosome conformation
    • Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306-1311 (2002).
    • (2002) Science , vol.295 , pp. 1306-1311
    • Dekker, J.1    Rippe, K.2    Dekker, M.3    Kleckner, N.4
  • 16
    • 84975705572 scopus 로고    scopus 로고
    • The second decade of 3C technologies: Detailed insights into nuclear organization
    • Denker, A. & de Laat, W. The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev. 30, 1357-1382 (2016).
    • (2016) Genes Dev. , vol.30 , pp. 1357-1382
    • Denker, A.1    De Laat, W.2
  • 17
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293 (2009).
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1
  • 18
    • 84919949716 scopus 로고    scopus 로고
    • A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
    • Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680 (2014).
    • (2014) Cell , vol.159 , pp. 1665-1680
    • Rao, S.S.P.1
  • 19
    • 84971324235 scopus 로고    scopus 로고
    • Formation of chromosomal domains by loop extrusion
    • Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Reports 15, 2038-2049 (2016).
    • (2016) Cell Reports , vol.15 , pp. 2038-2049
    • Fudenberg, G.1
  • 20
    • 84948403758 scopus 로고    scopus 로고
    • Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
    • Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456-E6465 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. E6456-E6465
    • Sanborn, A.L.1
  • 21
    • 84947765898 scopus 로고    scopus 로고
    • CTCF binding polarity determines chromatin looping
    • de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676-684 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 676-684
    • De Wit, E.1
  • 22
    • 84924533047 scopus 로고    scopus 로고
    • Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture
    • Vietri Rudan, M. et al. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Cell Reports 10, 1297-1309 (2015).
    • (2015) Cell Reports , vol.10 , pp. 1297-1309
    • Vietri Rudan, M.1
  • 23
    • 84960334782 scopus 로고    scopus 로고
    • The 3D genome as moderator of chromosomal communication
    • Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110-1121 (2016).
    • (2016) Cell , vol.164 , pp. 1110-1121
    • Dekker, J.1    Mirny, L.2
  • 24
    • 84992395897 scopus 로고    scopus 로고
    • Long non-coding RNAs: Spatial amplifiers that control nuclear structure and gene expression
    • Engreitz, J. M., Ollikainen, N. & Guttman, M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol. 17, 756-770 (2016).
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 756-770
    • Engreitz, J.M.1    Ollikainen, N.2    Guttman, M.3
  • 25
    • 33845360042 scopus 로고    scopus 로고
    • Ultra-high resolution imaging by fluorescence photoactivation localization microscopy
    • Hess, S. T., Girirajan, T. P. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258-4272 (2006).
    • (2006) Biophys. J. , vol.91 , pp. 4258-4272
    • Hess, S.T.1    Girirajan, T.P.2    Mason, M.D.3
  • 26
    • 33747179417 scopus 로고    scopus 로고
    • Imaging intracellular fluorescent proteins at nanometer resolution
    • Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642-1645 (2006).
    • (2006) Science , vol.313 , pp. 1642-1645
    • Betzig, E.1
  • 27
    • 33749026335 scopus 로고    scopus 로고
    • Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)
    • Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793-795 (2006).
    • (2006) Nat. Methods , vol.3 , pp. 793-795
    • Rust, M.J.1    Bates, M.2    Zhuang, X.3
  • 28
    • 84881243248 scopus 로고    scopus 로고
    • Real-time dynamics of RNA polymerase II clustering in live human cells
    • Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664-667 (2013).
    • (2013) Science , vol.341 , pp. 664-667
    • Cisse, I.I.1
  • 29
    • 84966908028 scopus 로고    scopus 로고
    • Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow
    • Ma, H. et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat. Biotechnol. 34, 528-530 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 528-530
    • Ma, H.1
  • 30
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491 (2013).
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1
  • 31
    • 84942845731 scopus 로고    scopus 로고
    • CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells
    • Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870-11875 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 11870-11875
    • Deng, W.1    Shi, X.2    Tjian, R.3    Lionnet, T.4    Singer, R.H.5
  • 32
    • 79960948298 scopus 로고    scopus 로고
    • Bridging the resolution gap in structural modeling of 3D genome organization
    • Marti-Renom, M. A. & Mirny, L. A. Bridging the resolution gap in structural modeling of 3D genome organization. PLOS Comput. Biol. 7, e1002125 (2011).
    • (2011) PLOS Comput. Biol. , vol.7 , pp. e1002125
    • Marti-Renom, M.A.1    Mirny, L.A.2
  • 33
    • 84943198135 scopus 로고    scopus 로고
    • Modeling chromosomes: Beyond pretty pictures
    • Imakaev, M. V., Fudenberg, G. & Mirny, L. A. Modeling chromosomes: beyond pretty pictures. FEBS Lett. 589, 3031-3036 (2015).
    • (2015) FEBS Lett. , vol.589 , pp. 3031-3036
    • Imakaev, M.V.1    Fudenberg, G.2    Mirny, L.A.3
  • 34
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380 (2012).
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1
  • 35
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381-385 (2012).
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1
  • 36
    • 84885617426 scopus 로고    scopus 로고
    • Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    • Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59-64 (2013).
    • (2013) Nature , vol.502 , pp. 59-64
    • Nagano, T.1
  • 37
    • 85016138529 scopus 로고    scopus 로고
    • Complex multi-enhancer contacts captured by genome architecture mapping
    • Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519-524 (2017).
    • (2017) Nature , vol.543 , pp. 519-524
    • Beagrie, R.A.1
  • 38
    • 84924347318 scopus 로고    scopus 로고
    • Multicolor CRISPR labeling of chromosomal loci in human cells
    • Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002-3007 (2015).
    • (2015) Proc. Natl Acad. Sci. USA , vol.112 , pp. 3002-3007
    • Ma, H.1
  • 39
    • 84869458315 scopus 로고    scopus 로고
    • Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy
    • Martell, J. D. et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30, 1143-1148 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 1143-1148
    • Martell, J.D.1
  • 40
    • 30544443562 scopus 로고    scopus 로고
    • A genetically encoded photosensitizer
    • Bulina, M. E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95-99 (2006).
    • (2006) Nat. Biotechnol. , vol.24 , pp. 95-99
    • Bulina, M.E.1
  • 41
    • 85004125680 scopus 로고    scopus 로고
    • Soft X-ray tomography reveals gradual chromatin compaction and reorganization during neurogenesis in vivo
    • Le Gros, M. A. et al. Soft X-ray tomography reveals gradual chromatin compaction and reorganization during neurogenesis in vivo. Cell Reports 17, 2125-2136 (2016).
    • (2016) Cell Reports , vol.17 , pp. 2125-2136
    • Le Gros, M.A.1
  • 42
    • 84908233327 scopus 로고    scopus 로고
    • Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft X-ray tomographies
    • Smith, E. A. et al. Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft X-ray tomographies. Biophys. J. 107, 1988-1996 (2014).
    • (2014) Biophys. J. , vol.107 , pp. 1988-1996
    • Smith, E.A.1
  • 43
    • 85026314548 scopus 로고    scopus 로고
    • ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells
    • Ou, H. D. et al. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).
    • (2017) Science , vol.357 , pp. eaag0025
    • Ou, H.D.1
  • 44
    • 84861975139 scopus 로고    scopus 로고
    • Nuclear bodies: Multifunctional companions of the genome
    • Dundr, M. Nuclear bodies: multifunctional companions of the genome. Curr. Opin. Cell Biol. 24, 415-422 (2012).
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 415-422
    • Dundr, M.1
  • 45
    • 79960622503 scopus 로고    scopus 로고
    • Biogenesis and function of nuclear bodies
    • Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. Trends Genet. 27, 295-306 (2011).
    • (2011) Trends Genet. , vol.27 , pp. 295-306
    • Mao, Y.S.1    Zhang, B.2    Spector, D.L.3
  • 46
    • 77950375276 scopus 로고    scopus 로고
    • Initial genomics of the human nucleolus
    • Németh, A. et al. Initial genomics of the human nucleolus. PLoS Genet. 6, e1000889 (2010).
    • (2010) PLoS Genet. , vol.6 , pp. e1000889
    • Németh, A.1
  • 47
    • 78149295090 scopus 로고    scopus 로고
    • High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli
    • van Koningsbruggen, S. et al. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol. Biol. Cell 21, 3735-3748 (2010).
    • (2010) Mol. Biol. Cell , vol.21 , pp. 3735-3748
    • Van Koningsbruggen, S.1
  • 48
    • 84966676788 scopus 로고    scopus 로고
    • APEX fingerprinting reveals the subcellular localization of proteins of interest
    • Lee, S. Y. et al. APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Reports 15, 1837-1847 (2016).
    • (2016) Cell Reports , vol.15 , pp. 1837-1847
    • Lee, S.Y.1
  • 49
    • 84929325401 scopus 로고    scopus 로고
    • The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3
    • McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232-236 (2015).
    • (2015) Nature , vol.521 , pp. 232-236
    • McHugh, C.A.1
  • 50
    • 84879642373 scopus 로고    scopus 로고
    • The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome
    • Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341, 1237973 (2013).
    • (2013) Science , vol.341 , pp. 1237973
    • Engreitz, J.M.1
  • 51
    • 84882737017 scopus 로고    scopus 로고
    • Chromatin position effects assayed by thousands of reporters integrated in parallel
    • Akhtar, W. et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154, 914-927 (2013).
    • (2013) Cell , vol.154 , pp. 914-927
    • Akhtar, W.1
  • 52
    • 84943197698 scopus 로고    scopus 로고
    • Restraint-based three-dimensional modeling of genomes and genomic domains
    • Serra, F. et al. Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett. 589, 2987-2995 (2015).
    • (2015) FEBS Lett. , vol.589 , pp. 2987-2995
    • Serra, F.1
  • 53
    • 85014061747 scopus 로고    scopus 로고
    • Comprehensive characterization of neutrophil genome topology
    • Zhu, Y. et al. Comprehensive characterization of neutrophil genome topology. Genes Dev. 31, 141-153 (2017).
    • (2017) Genes Dev. , vol.31 , pp. 141-153
    • Zhu, Y.1
  • 54
    • 84888018217 scopus 로고    scopus 로고
    • Organization of the mitotic chromosome
    • Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948-953 (2013).
    • (2013) Science , vol.342 , pp. 948-953
    • Naumova, N.1
  • 55
    • 85027511958 scopus 로고    scopus 로고
    • FISH-ing for captured contacts: Towards reconciling FISH and 3C
    • Fudenberg, G. & Imakaev, M. FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat. Methods 14, 673-678 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 673-678
    • Fudenberg, G.1    Imakaev, M.2
  • 56
    • 84904567038 scopus 로고    scopus 로고
    • 3D trajectories adopted by coding and regulatory DNA elements: First-passage times for genomic interactions
    • Lucas, J. S., Zhang, Y., Dudko, O. K. & Murre, C. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158, 339-352 (2014).
    • (2014) Cell , vol.158 , pp. 339-352
    • Lucas, J.S.1    Zhang, Y.2    Dudko, O.K.3    Murre, C.4
  • 57
    • 84924870007 scopus 로고    scopus 로고
    • Modeling epigenome folding: Formation and dynamics of topologically associated chromatin domains
    • Jost, D., Carrivain, P., Cavalli, G. & Vaillant, C. Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42, 9553-9561 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. 9553-9561
    • Jost, D.1    Carrivain, P.2    Cavalli, G.3    Vaillant, C.4
  • 59
    • 84974717567 scopus 로고    scopus 로고
    • CRISPR/Cas9 in genome editing and beyond
    • Wang, H., La Russa, M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227-264 (2016).
    • (2016) Annu. Rev. Biochem. , vol.85 , pp. 227-264
    • Wang, H.1    La Russa, M.2    Qi, L.S.3
  • 60
    • 2142742367 scopus 로고    scopus 로고
    • Micromechanical studies of mitotic chromosomes
    • Poirier, M. G. & Marko, J. F. Micromechanical studies of mitotic chromosomes. Curr. Top. Dev. Biol. 55, 75-141 (2003).
    • (2003) Curr. Top. Dev. Biol. , vol.55 , pp. 75-141
    • Poirier, M.G.1    Marko, J.F.2
  • 61
    • 70149094741 scopus 로고    scopus 로고
    • Global identification of yeast chromosome interactions using genome conformation capture
    • Rodley, C. D., Bertels, F., Jones, B. & O'Sullivan, J. M. Global identification of yeast chromosome interactions using genome conformation capture. Fungal Genet. Biol. 46, 879-886 (2009).
    • (2009) Fungal Genet. Biol. , vol.46 , pp. 879-886
    • Rodley, C.D.1    Bertels, F.2    Jones, B.3    O'Sullivan, J.M.4
  • 62
    • 33750212321 scopus 로고    scopus 로고
    • Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C)
    • Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348-1354 (2006).
    • (2006) Nat. Genet. , vol.38 , pp. 1348-1354
    • Simonis, M.1
  • 63
    • 33749400168 scopus 로고    scopus 로고
    • Chromosome conformation capture carbon copy (5C): A massively parallel solution for mapping interactions between genomic elements
    • Dostie, J. et al. Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299-1309 (2006).
    • (2006) Genome Res. , vol.16 , pp. 1299-1309
    • Dostie, J.1
  • 64
    • 85011003039 scopus 로고    scopus 로고
    • Massively multiplex single-cell Hi-C
    • Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263-266 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 263-266
    • Ramani, V.1
  • 65
    • 84926177361 scopus 로고    scopus 로고
    • Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes
    • Ma, W. et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 12, 71-78 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 71-78
    • Ma, W.1
  • 66
    • 84934435162 scopus 로고    scopus 로고
    • Mapping nucleosome resolution chromosome folding in yeast by Micro-C
    • Hsieh, T.-H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108-119 (2015).
    • (2015) Cell , vol.162 , pp. 108-119
    • Hsieh, T.-H.S.1
  • 67
    • 84990923288 scopus 로고    scopus 로고
    • Micro-C XL: Assaying chromosome conformation from the nucleosome to the entire genome
    • Hsieh, T.-H. S., Fudenberg, G., Goloborodko, A. & Rando, O. J. Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome. Nat. Methods 13, 1009-1011 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 1009-1011
    • Hsieh, T.-H.S.1    Fudenberg, G.2    Goloborodko, A.3    Rando, O.J.4
  • 68
    • 84923823453 scopus 로고    scopus 로고
    • Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C
    • Dryden, N. H. et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res. 24, 1854-1868 (2014).
    • (2014) Genome Res. , vol.24 , pp. 1854-1868
    • Dryden, N.H.1
  • 69
    • 84895832107 scopus 로고    scopus 로고
    • Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment
    • Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205-212 (2014).
    • (2014) Nat. Genet. , vol.46 , pp. 205-212
    • Hughes, J.R.1
  • 70
    • 84862917808 scopus 로고    scopus 로고
    • Genome architectures revealed by tethered chromosome conformation capture and populationbased modeling
    • Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. Genome architectures revealed by tethered chromosome conformation capture and populationbased modeling. Nat. Biotechnol. 30, 90-98 (2011).
    • (2011) Nat. Biotechnol. , vol.30 , pp. 90-98
    • Kalhor, R.1    Tjong, H.2    Jayathilaka, N.3    Alber, F.4    Chen, L.5
  • 71
    • 84982698638 scopus 로고    scopus 로고
    • Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture
    • Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA 113, E4504-E4512 (2016).
    • (2016) Proc. Natl Acad. Sci. USA , vol.113 , pp. E4504-E4512
    • Darrow, E.M.1
  • 72
    • 70449103609 scopus 로고    scopus 로고
    • An oestrogen-receptor-?-bound human chromatin interactome
    • Fullwood, M. J. et al. An oestrogen-receptor-?-bound human chromatin interactome. Nature 462, 58-64 (2009).
    • (2009) Nature , vol.462 , pp. 58-64
    • Fullwood, M.J.1
  • 73
    • 0034007256 scopus 로고    scopus 로고
    • Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase
    • van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424-428 (2000).
    • (2000) Nat. Biotechnol. , vol.18 , pp. 424-428
    • Van Steensel, B.1    Henikoff, S.2
  • 74
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245 (2008).
    • (2008) PLoS Biol. , vol.6 , pp. e245
    • Hiratani, I.1
  • 75
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen, R. S. et al. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl Acad. Sci. USA 107, 139-144 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 139-144
    • Hansen, R.S.1
  • 76
    • 84929355793 scopus 로고    scopus 로고
    • Systematic discovery of Xist RNA binding proteins
    • Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404-416 (2015).
    • (2015) Cell , vol.161 , pp. 404-416
    • Chu, C.1
  • 77
    • 84862908875 scopus 로고    scopus 로고
    • The genomic binding sites of a noncoding RNA
    • Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497-20502 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 20497-20502
    • Simon, M.D.1
  • 78
    • 84908501892 scopus 로고    scopus 로고
    • Nucleolar tethering mediates pairing between the IgH and Myc loci
    • Strongin, D. E., Groudine, M. & Politz, J. C. Nucleolar tethering mediates pairing between the IgH and Myc loci. Nucleus 5, 474-481 (2014).
    • (2014) Nucleus , vol.5 , pp. 474-481
    • Strongin, D.E.1    Groudine, M.2    Politz, J.C.3
  • 79
    • 84897452794 scopus 로고    scopus 로고
    • Single-cell in situ RNA profiling by sequential hybridization
    • Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360-361 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 360-361
    • Lubeck, E.1    Coskun, A.F.2    Zhiyentayev, T.3    Ahmad, M.4    Cai, L.5
  • 80
    • 84891363606 scopus 로고    scopus 로고
    • Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors
    • Ma, H., Reyes-Gutierrez, P. & Pederson, T. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. Proc. Natl Acad. Sci. USA 110, 21048-21053 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 21048-21053
    • Ma, H.1    Reyes-Gutierrez, P.2    Pederson, T.3
  • 82
    • 84939489844 scopus 로고    scopus 로고
    • Identification of gene positioning factors using high-throughput imaging mapping
    • Shachar, S., Voss, T. C., Pegoraro, G., Sciascia, N. & Misteli, T. Identification of gene positioning factors using high-throughput imaging mapping. Cell 162, 911-923 (2015).
    • (2015) Cell , vol.162 , pp. 911-923
    • Shachar, S.1    Voss, T.C.2    Pegoraro, G.3    Sciascia, N.4    Misteli, T.5
  • 83
    • 84990862095 scopus 로고    scopus 로고
    • CRISPR-Cas9 nuclear dynamics and target recognition in living cells
    • Ma, H. et al. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J. Cell Biol. 214, 529-537 (2016).
    • (2016) J. Cell Biol. , vol.214 , pp. 529-537
    • Ma, H.1
  • 84
    • 85017465045 scopus 로고    scopus 로고
    • Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH
    • Takei, Y., Shah, S., Harvey, S., Qi, L. S. & Cai, L. Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys. J. 112, 1773-1776 (2017).
    • (2017) Biophys. J. , vol.112 , pp. 1773-1776
    • Takei, Y.1    Shah, S.2    Harvey, S.3    Qi, L.S.4    Cai, L.5
  • 85
    • 84873413265 scopus 로고    scopus 로고
    • Singlemolecule analysis of gene expression using two-color RNA labeling in live yeast
    • Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A. & Singer, R. H. Singlemolecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10, 119-121 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 119-121
    • Hocine, S.1    Raymond, P.2    Zenklusen, D.3    Chao, J.A.4    Singer, R.H.5
  • 86
    • 84978401505 scopus 로고    scopus 로고
    • Enhancer control of transcriptional bursting
    • Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358-368 (2016).
    • (2016) Cell , vol.166 , pp. 358-368
    • Fukaya, T.1    Lim, B.2    Levine, M.3
  • 87
    • 0030461543 scopus 로고    scopus 로고
    • In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition
    • Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685-1700 (1996).
    • (1996) J. Cell Biol. , vol.135 , pp. 1685-1700
    • Robinett, C.C.1
  • 89
    • 85036582843 scopus 로고    scopus 로고
    • 3D reconstruction of biological structures: Automated procedures for alignment and reconstruction of multiple tilt series in electron tomography
    • Phan, S. et al. 3D reconstruction of biological structures: automated procedures for alignment and reconstruction of multiple tilt series in electron tomography. Adv. Struct. Chem. Imaging 2, 8 (2017).
    • (2017) Adv. Struct. Chem. Imaging , vol.2 , pp. 8
    • Phan, S.1
  • 90
    • 0028048497 scopus 로고
    • Serial section electron tomography: A method for threedimensional reconstruction of large structures
    • Soto, G. E. et al. Serial section electron tomography: a method for threedimensional reconstruction of large structures. NeuroImage 1, 230-243 (1994).
    • (1994) NeuroImage , vol.1 , pp. 230-243
    • Soto, G.E.1
  • 91
    • 84995752889 scopus 로고    scopus 로고
    • Multicolor electron microscopy for simultaneous visualization of multiple molecular species
    • Adams, S. R. et al. Multicolor electron microscopy for simultaneous visualization of multiple molecular species. Cell Chem. Biol. 23, 1417-1427 (2016).
    • (2016) Cell Chem. Biol. , vol.23 , pp. 1417-1427
    • Adams, S.R.1
  • 92
    • 84881241505 scopus 로고    scopus 로고
    • Nuclear pore scaffold structure analyzed by superresolution microscopy and particle averaging
    • Szymborska, A. et al. Nuclear pore scaffold structure analyzed by superresolution microscopy and particle averaging. Science 341, 655-658 (2013).
    • (2013) Science , vol.341 , pp. 655-658
    • Szymborska, A.1
  • 93
    • 84857623324 scopus 로고    scopus 로고
    • PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking
    • Izeddin, I. et al. PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt. Express 20, 4957-4967 (2012).
    • (2012) Opt. Express , vol.20 , pp. 4957-4967
    • Izeddin, I.1
  • 94
    • 84864437708 scopus 로고    scopus 로고
    • Scanning angle interference microscopy reveals cell dynamics at the nanoscale
    • Paszek, M. J. et al. Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nat. Methods 9, 825-827 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 825-827
    • Paszek, M.J.1
  • 95
    • 84908251017 scopus 로고    scopus 로고
    • Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution
    • Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).
    • (2014) Science , vol.346 , pp. 1257998
    • Chen, B.C.1
  • 96
    • 84960154744 scopus 로고    scopus 로고
    • High-density three-dimensional localization microscopy across large volumes
    • Legant, W. R. et al. High-density three-dimensional localization microscopy across large volumes. Nat. Methods 13, 359-365 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 359-365
    • Legant, W.R.1
  • 97
    • 84896338378 scopus 로고    scopus 로고
    • Single-molecule dynamics of enhanceosome assembly in embryonic stem cells
    • Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274-1285 (2014).
    • (2014) Cell , vol.156 , pp. 1274-1285
    • Chen, J.1
  • 98
    • 84903392046 scopus 로고    scopus 로고
    • Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus
    • Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).
    • (2014) ELife , vol.3 , pp. e02230
    • Izeddin, I.1
  • 99
    • 85019959732 scopus 로고    scopus 로고
    • CTCF and cohesin regulate chromatin loop stability with distinct dynamics
    • Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, e25776 (2017).
    • (2017) ELife , vol.6 , pp. e25776
    • Hansen, A.S.1    Pustova, I.2    Cattoglio, C.3    Tjian, R.4    Darzacq, X.5
  • 101
    • 84923803017 scopus 로고    scopus 로고
    • A general method to improve fluorophores for live-cell and single-molecule microscopy
    • Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244-250 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 244-250
    • Grimm, J.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.