메뉴 건너뛰기




Volumn 24, Issue 10, 2017, Pages 825-833

Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL RNA; CRISPR CAS13A ENZYME; RIBONUCLEASE; SINGLE STRANDED RNA; UNCLASSIFIED DRUG; ENDONUCLEASE; GUIDE RNA;

EID: 85030750820     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.3466     Document Type: Article
Times cited : (121)

References (41)
  • 1
    • 84929153360 scopus 로고    scopus 로고
    • Remarkable mechanisms in microbes to resist phage infections
    • Dy, R.L., Richter, C., Salmond, G.P. & Fineran, P.C. Remarkable mechanisms in microbes to resist phage infections. Annu. Rev. Virol. 1, 307-331 (2014).
    • (2014) Annu. Rev. Virol. , vol.1 , pp. 307-331
    • Dy, R.L.1    Richter, C.2    Salmond, G.P.3    Fineran, P.C.4
  • 2
    • 84899134190 scopus 로고    scopus 로고
    • CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity
    • Barrangou, R. & Marraffini, L.A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol. Cell 54, 234-244 (2014).
    • (2014) Mol. Cell , vol.54 , pp. 234-244
    • Barrangou, R.1    Marraffini, L.A.2
  • 3
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55-61 (2015).
    • (2015) Nature , vol.526 , pp. 55-61
    • Marraffini, L.A.1
  • 4
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 (2014).
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 5
    • 84954214717 scopus 로고    scopus 로고
    • Biology and applications of CRISPR systems: Harnessing nature's toolbox for genome engineering
    • Wright, A.V., Nuñez, J.K. & Doudna, J.A. Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering. Cell 164, 29-44 (2016).
    • (2016) Cell , vol.164 , pp. 29-44
    • Wright, A.V.1    Nuñez, J.K.2    Doudna, J.A.3
  • 6
    • 84986898390 scopus 로고    scopus 로고
    • Applications of CRISPR technologies in research and beyond
    • Barrangou, R. & Doudna, J.A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933-941 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 933-941
    • Barrangou, R.1    Doudna, J.A.2
  • 7
    • 84913568580 scopus 로고    scopus 로고
    • Programmable RNA recognition and cleavage by CRISPR/ Cas9
    • O'Connell, M.R. et al. Programmable RNA recognition and cleavage by CRISPR/ Cas9. Nature 516, 263-266 (2014).
    • (2014) Nature , vol.516 , pp. 263-266
    • O'Connell, M.R.1
  • 8
    • 84947736727 scopus 로고    scopus 로고
    • Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
    • Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell 60, 385-397 (2015).
    • (2015) Mol. Cell , vol.60 , pp. 385-397
    • Shmakov, S.1
  • 9
    • 84961226910 scopus 로고    scopus 로고
    • Programmable RNA tracking in live cells with CRISPR/Cas9
    • Nelles, D.A. et al. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165, 488-496 (2016).
    • (2016) Cell , vol.165 , pp. 488-496
    • Nelles, D.A.1
  • 10
    • 84991728709 scopus 로고    scopus 로고
    • Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection
    • East-Seletsky, A. et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538, 270-273 (2016).
    • (2016) Nature , vol.538 , pp. 270-273
    • East-Seletsky, A.1
  • 11
    • 85010207605 scopus 로고    scopus 로고
    • Diversity and evolution of class 2 CRISPR-Cas systems
    • Shmakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169-182 (2017).
    • (2017) Nat. Rev. Microbiol. , vol.15 , pp. 169-182
    • Shmakov, S.1
  • 12
    • 85008425651 scopus 로고    scopus 로고
    • Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28
    • Smargon, A.A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618-630.e7 (2017).
    • (2017) Mol. Cell , vol.65 , pp. 618e7-618e7
    • Smargon, A.A.1
  • 13
    • 85017652697 scopus 로고    scopus 로고
    • Nucleic acid detection with CRISPR-Cas13a/C2c2
    • Gootenberg, J.S. et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356, 438-442 (2017).
    • (2017) Science , vol.356 , pp. 438-442
    • Gootenberg, J.S.1
  • 14
    • 85018759369 scopus 로고    scopus 로고
    • RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes
    • East-Seletsky, A., O?Connell, M.R., Burstein, D., Knott, G.J. & Doudna, J.A. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol. Cell 66, 373-383.e3 (2017).
    • (2017) Mol. Cell , vol.66 , pp. 373e3-373e3
    • East-Seletsky, A.1    Oconnell, M.R.2    Burstein, D.3    Knott, G.J.4    Doudna, J.A.5
  • 15
    • 64049118040 scopus 로고    scopus 로고
    • Short motif sequences determine the targets of the prokaryotic CRISPR defence system
    • Mojica, F.J., Díez-Villaseñor, C., García-Martínez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740 (2009).
    • (2009) Microbiology , vol.155 , pp. 733-740
    • Mojica, F.J.1    Díez-Villaseñor, C.2    García-Martínez, J.3    Almendros, C.4
  • 16
    • 85009228507 scopus 로고    scopus 로고
    • Two distant catalytic sites are responsible for C2c2 RNase activities
    • Liu, L. et al. Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168, 121-134.e12 (2017).
    • (2017) Cell , vol.168 , pp. 121e12-121e12
    • Liu, L.1
  • 17
    • 84974606818 scopus 로고    scopus 로고
    • C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    • Abudayyeh, O.O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).
    • (2016) Science , vol.353 , pp. aaf5573
    • Abudayyeh, O.O.1
  • 18
    • 77956498326 scopus 로고    scopus 로고
    • Sequence-and structure-specific RNA processing by a CRISPR endonuclease
    • Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J.A. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355-1358 (2010).
    • (2010) Science , vol.329 , pp. 1355-1358
    • Haurwitz, R.E.1    Jinek, M.2    Wiedenheft, B.3    Zhou, K.4    Doudna, J.A.5
  • 19
    • 84858659496 scopus 로고    scopus 로고
    • Mechanism of substrate selection by a highly specific CRISPR endoribonuclease
    • Sternberg, S.H., Haurwitz, R.E. & Doudna, J.A. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 18, 661-672 (2012).
    • (2012) RNA , vol.18 , pp. 661-672
    • Sternberg, S.H.1    Haurwitz, R.E.2    Doudna, J.A.3
  • 20
    • 84920939515 scopus 로고    scopus 로고
    • Structural principles of CRISPR RNA processing
    • Li, H. Structural principles of CRISPR RNA processing. Structure 23, 13-20 (2015).
    • (2015) Structure , vol.23 , pp. 13-20
    • Li, H.1
  • 21
    • 84924740446 scopus 로고    scopus 로고
    • Cutting it close: CRISPR-associated endoribonuclease structure and function
    • Hochstrasser, M.L. & Doudna, J.A. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 40, 58-66 (2015).
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 58-66
    • Hochstrasser, M.L.1    Doudna, J.A.2
  • 22
    • 84942746261 scopus 로고    scopus 로고
    • Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity
    • Charpentier, E., Richter, H., van der Oost, J. & White, M.F. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol. Rev. 39, 428-441 (2015).
    • (2015) FEMS Microbiol. Rev. , vol.39 , pp. 428-441
    • Charpentier, E.1    Richter, H.2    Van Der Oost, J.3    White, M.F.4
  • 24
    • 85026197774 scopus 로고    scopus 로고
    • The molecular architecture for RNA-guided RNA cleavage by Cas13a
    • Liu, L. et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170, 714-726.e10 (2017).
    • (2017) Cell , vol.170 , pp. 714e10-714e10
    • Liu, L.1
  • 25
    • 84923279931 scopus 로고    scopus 로고
    • The structural biology of CRISPR-Cas systems
    • Jiang, F. & Doudna, J.A. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30, 100-111 (2015).
    • (2015) Curr. Opin. Struct. Biol. , vol.30 , pp. 100-111
    • Jiang, F.1    Doudna, J.A.2
  • 26
    • 84985914818 scopus 로고    scopus 로고
    • Anatomy of RISC: How do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip
    • Nakanishi, K. Anatomy of RISC: how do small RNAs and chaperones activate Argonaute proteins? Wiley Interdiscip. Rev. RNA 7, 637-660 (2016).
    • (2016) Rev. RNA , vol.7 , pp. 637-660
    • Nakanishi, K.1
  • 27
    • 84928925211 scopus 로고    scopus 로고
    • Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog
    • Osawa, T., Inanaga, H., Sato, C. & Numata, T. Crystal structure of the CRISPR-Cas RNA silencing Cmr complex bound to a target analog. Mol. Cell 58, 418-430 (2015).
    • (2015) Mol. Cell , vol.58 , pp. 418-430
    • Osawa, T.1    Inanaga, H.2    Sato, C.3    Numata, T.4
  • 28
    • 58649113420 scopus 로고    scopus 로고
    • Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein
    • Parker, J.S., Parizotto, E.A., Wang, M., Roe, S.M. & Barford, D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell 33, 204-214 (2009).
    • (2009) Mol. Cell , vol.33 , pp. 204-214
    • Parker, J.S.1    Parizotto, E.A.2    Wang, M.3    Roe, S.M.4    Barford, D.5
  • 29
    • 84933574487 scopus 로고    scopus 로고
    • A Cas9-guide RNA complex preorganized for target DNA recognition
    • Jiang, F., Zhou, K., Ma, L., Gressel, S. & Doudna, J.A. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477-1481 (2015).
    • (2015) Science , vol.348 , pp. 1477-1481
    • Jiang, F.1    Zhou, K.2    Ma, L.3    Gressel, S.4    Doudna, J.A.5
  • 30
    • 84934293424 scopus 로고    scopus 로고
    • Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides
    • Salomon, W.E., Jolly, S.M., Moore, M.J., Zamore, P.D. & Serebrov, V. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84-95 (2015).
    • (2015) Cell , vol.162 , pp. 84-95
    • Salomon, W.E.1    Jolly, S.M.2    Moore, M.J.3    Zamore, P.D.4    Serebrov, V.5
  • 32
    • 79953737180 scopus 로고    scopus 로고
    • Overview of the CCP4 suite and current developments
    • Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242 (2011).
    • (2011) Acta Crystallogr. D Biol. Crystallogr. , vol.67 , pp. 235-242
    • Winn, M.D.1
  • 34
    • 0033212804 scopus 로고    scopus 로고
    • The Rossmann Fourier autoindexing algorithm in MOSFLM
    • Powell, H.R. The Rossmann Fourier autoindexing algorithm in MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 55, 1690-1695 (1999).
    • (1999) Acta Crystallogr. D Biol. Crystallogr. , vol.55 , pp. 1690-1695
    • Powell, H.R.1
  • 35
    • 76449098262 scopus 로고    scopus 로고
    • PHENIX: A comprehensive Python-based system for macromolecular structure solution
    • Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 36
    • 37349103121 scopus 로고    scopus 로고
    • Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard
    • Terwilliger, T.C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 64, 61-69 (2008).
    • (2008) Acta Crystallogr. D Biol. Crystallogr. , vol.64 , pp. 61-69
    • Terwilliger, T.C.1
  • 38
    • 77952352777 scopus 로고    scopus 로고
    • Semiautomated model building for RNA crystallography using a directed rotameric approach
    • Keating, K.S. & Pyle, A.M. Semiautomated model building for RNA crystallography using a directed rotameric approach. Proc. Natl. Acad. Sci. USA 107, 8177-8182 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 8177-8182
    • Keating, K.S.1    Pyle, A.M.2
  • 39
    • 84860273177 scopus 로고    scopus 로고
    • Towards automated crystallographic structure refinement with phenix.refine
    • Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352-367 (2012).
    • (2012) Acta Crystallogr. D Biol. Crystallogr. , vol.68 , pp. 352-367
    • Afonine, P.V.1
  • 40
    • 43249097539 scopus 로고    scopus 로고
    • Iterative-build OMIT maps: Map improvement by iterative model building and refinement without model bias
    • Terwilliger, T.C. et al. Iterative-build OMIT maps: map improvement by iterative model building and refinement without model bias. Acta Crystallogr. D Biol. Crystallogr. 64, 515-524 (2008).
    • (2008) Acta Crystallogr. D Biol. Crystallogr. , vol.64 , pp. 515-524
    • Terwilliger, T.C.1
  • 41
    • 74549178560 scopus 로고    scopus 로고
    • MolProbity: All-atom structure validation for macromolecular crystallography
    • Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12-21 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 12-21
    • Chen, V.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.