메뉴 건너뛰기




Volumn 38, Issue 4, 2018, Pages 620-633

Recent advances in biological production of erythritol

Author keywords

Erythritol; industrial production; metabolic engineering; metabolic pathways; renewable feedstocks; sweetener

Indexed keywords

BIOCHEMISTRY; COST ENGINEERING; COSTS; METABOLISM; MICROORGANISMS; SUBSTRATES; YEAST;

EID: 85030177228     PISSN: 07388551     EISSN: 15497801     Source Type: Journal    
DOI: 10.1080/07388551.2017.1380598     Document Type: Review
Times cited : (125)

References (92)
  • 1
    • 85000763553 scopus 로고    scopus 로고
    • From obesity to cancer: a review on proposed mechanisms
    • Tahergorabi Z, Khazaei M, Moodi M, et al. From obesity to cancer: a review on proposed mechanisms. Cell Biochem Funct. 2016;34:533–545.
    • (2016) Cell Biochem Funct , vol.34 , pp. 533-545
    • Tahergorabi, Z.1    Khazaei, M.2    Moodi, M.3
  • 2
    • 85044554157 scopus 로고    scopus 로고
    • [Internet]. World Health Organization. Obesity and overweight fact sheet;
    • WHO [Internet]. World Health Organization. Obesity and overweight fact sheet; 2016. Available from: http://www.who.int/mediacentre/factsheets/fs311/en/
    • (2016)
  • 4
    • 84946486687 scopus 로고    scopus 로고
    • Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time
    • Sellmann C, Priebs J, Landmann M, et al. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time. J Nutr Biochem. 2015;26:1183–1192.
    • (2015) J Nutr Biochem , vol.26 , pp. 1183-1192
    • Sellmann, C.1    Priebs, J.2    Landmann, M.3
  • 5
    • 84942805581 scopus 로고    scopus 로고
    • Fructose and liver function—is this behind nonalcoholic liver disease?
    • Jin R, Vos MB., Fructose and liver function—is this behind nonalcoholic liver disease? Curr Opin Clin Nutr Metab Care. 2015;18:490–495.
    • (2015) Curr Opin Clin Nutr Metab Care , vol.18 , pp. 490-495
    • Jin, R.1    Vos, M.B.2
  • 7
    • 84961175137 scopus 로고    scopus 로고
    • Metabolic effects of non-nutritive sweeteners
    • Pepino MY., Metabolic effects of non-nutritive sweeteners. Physiol Behav. 2015;152:450–455.
    • (2015) Physiol Behav , vol.152 , pp. 450-455
    • Pepino, M.Y.1
  • 8
    • 84893519188 scopus 로고    scopus 로고
    • Biotechnological production of natural zero-calorie sweeteners
    • Philippe RN, de Mey M, Anderson J, et al. Biotechnological production of natural zero-calorie sweeteners. Curr Opin Biotechnol. 2014;26:155–161.
    • (2014) Curr Opin Biotechnol , vol.26 , pp. 155-161
    • Philippe, R.N.1    de Mey, M.2    Anderson, J.3
  • 9
    • 84908325271 scopus 로고    scopus 로고
    • Artificial sweeteners induce glucose intolerance by altering the gut microbiota
    • Suez J, Korem T, Zeevi D, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–186.
    • (2014) Nature , vol.514 , pp. 181-186
    • Suez, J.1    Korem, T.2    Zeevi, D.3
  • 10
    • 84983646544 scopus 로고    scopus 로고
    • Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects
    • Wolnerhanssen BK, Cajacob L, Keller N, et al. Gut hormone secretion, gastric emptying, and glycemic responses to erythritol and xylitol in lean and obese subjects. Am J Physiol Endocrinol Metab. 2016;310:E1053–E1061.
    • (2016) Am J Physiol Endocrinol Metab , vol.310 , pp. E1053-E1061
    • Wolnerhanssen, B.K.1    Cajacob, L.2    Keller, N.3
  • 11
    • 34247233320 scopus 로고    scopus 로고
    • Threshold for transitory diarrhea induced by ingestion of xylitol and lactitol in young male and female adults
    • Oku T, Nakamura S., Threshold for transitory diarrhea induced by ingestion of xylitol and lactitol in young male and female adults. J Nutr Sci Vitaminol. 2007;53:13–20.
    • (2007) J Nutr Sci Vitaminol , vol.53 , pp. 13-20
    • Oku, T.1    Nakamura, S.2
  • 12
    • 0029838958 scopus 로고    scopus 로고
    • Erythritol: a review of biological and toxicological studies
    • Bernt WO, Borzelleca JF, Flamm G, et al. Erythritol: a review of biological and toxicological studies. Regul Toxicol Pharmacol. 1996;24:S191–S197.
    • (1996) Regul Toxicol Pharmacol , vol.24 , pp. S191-S197
    • Bernt, W.O.1    Borzelleca, J.F.2    Flamm, G.3
  • 13
    • 0032411028 scopus 로고    scopus 로고
    • Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data
    • Munro IC, Bernt WO, Borzelleca JF, et al. Erythritol: an interpretive summary of biochemical, metabolic, toxicological and clinical data. Food Chem Toxicol. 1998;36:1139–1174.
    • (1998) Food Chem Toxicol , vol.36 , pp. 1139-1174
    • Munro, I.C.1    Bernt, W.O.2    Borzelleca, J.F.3
  • 14
    • 27944455247 scopus 로고    scopus 로고
    • Human gut microbiota does not ferment erythritol
    • Arrigoni E, Brouns F, Amadò R., Human gut microbiota does not ferment erythritol. Br J Nutr. 2007;94:643.
    • (2007) Br J Nutr , vol.94 , pp. 643
    • Arrigoni, E.1    Brouns, F.2    Amadò, R.3
  • 15
    • 85019558876 scopus 로고    scopus 로고
    • Erythritol is a pentose-phosphate pathway metabolite and associated with adiposity gain in young adults
    • Hootman KC, Trezzi JP, Kraemer L, et al. Erythritol is a pentose-phosphate pathway metabolite and associated with adiposity gain in young adults. Proc Natl Acad Sci USA. 2017;114:E4233–e4240.
    • (2017) Proc Natl Acad Sci USA , vol.114 , pp. E4233-e4240
    • Hootman, K.C.1    Trezzi, J.P.2    Kraemer, L.3
  • 16
    • 84941651078 scopus 로고    scopus 로고
    • Panel on Food Additives and Nutrient Sources added to Food. Scientific opinion on the safety of the proposed extension of use of erythritol (E 968) as a food additive
    • EFSA. Panel on Food Additives and Nutrient Sources added to Food. Scientific opinion on the safety of the proposed extension of use of erythritol (E 968) as a food additive. EFSA J. 2015;13:4033.
    • (2015) EFSA J , vol.13 , pp. 4033
  • 17
    • 0345824724 scopus 로고    scopus 로고
    • Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties
    • Livesey G., Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. NRR. 2003;16:163–191.
    • (2003) NRR , vol.16 , pp. 163-191
    • Livesey, G.1
  • 19
    • 84905375340 scopus 로고    scopus 로고
    • Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study
    • Flint N, Hamburg NM, Holbrook M, et al. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: a pilot study. Acta Diabetol. 2014;51:513–516.
    • (2014) Acta Diabetol , vol.51 , pp. 513-516
    • Flint, N.1    Hamburg, N.M.2    Holbrook, M.3
  • 20
    • 84941264522 scopus 로고    scopus 로고
    • High production of erythritol from Candida sorbosivorans SSE-24 and its inhibitory effect on biofilm formation of Streptococcus mutans
    • Saran S, Mukherjee S, Dalal J, et al. High production of erythritol from Candida sorbosivorans SSE-24 and its inhibitory effect on biofilm formation of Streptococcus mutans. Bioresour Technol. 2015;198:31–38.
    • (2015) Bioresour Technol , vol.198 , pp. 31-38
    • Saran, S.1    Mukherjee, S.2    Dalal, J.3
  • 21
    • 84886247532 scopus 로고    scopus 로고
    • Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis
    • Hashino E, Kuboniwa M, Alghamdi SA, et al. Erythritol alters microstructure and metabolomic profiles of biofilm composed of Streptococcus gordonii and Porphyromonas gingivalis. Mol Oral Microbiol. 2013;28:435–451.
    • (2013) Mol Oral Microbiol , vol.28 , pp. 435-451
    • Hashino, E.1    Kuboniwa, M.2    Alghamdi, S.A.3
  • 22
    • 84889888848 scopus 로고    scopus 로고
    • Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables
    • Runnel R, Makinen KK, Honkala S, et al. Effect of three-year consumption of erythritol, xylitol and sorbitol candies on various plaque and salivary caries-related variables. J Dent. 2013;41:1236–1244.
    • (2013) J Dent , vol.41 , pp. 1236-1244
    • Runnel, R.1    Makinen, K.K.2    Honkala, S.3
  • 23
    • 84994172988 scopus 로고    scopus 로고
    • Long-term effect of erythritol on dental caries development during childhood: a posttreatment survival analysis
    • Falony G, Honkala S, Runnel R, et al. Long-term effect of erythritol on dental caries development during childhood: a posttreatment survival analysis. Caries Res. 2016;50:579–588.
    • (2016) Caries Res , vol.50 , pp. 579-588
    • Falony, G.1    Honkala, S.2    Runnel, R.3
  • 24
    • 84859156120 scopus 로고    scopus 로고
    • The caries-preventive effect of xylitol/maltitol and erythritol/maltitol lozenges: results of a double-blinded, cluster-randomized clinical trial in an area of natural fluoridation
    • Lenkkeri AM, Pienihakkinen K, Hurme S, et al. The caries-preventive effect of xylitol/maltitol and erythritol/maltitol lozenges: results of a double-blinded, cluster-randomized clinical trial in an area of natural fluoridation. Int J Paediatr Dent. 2012;22:180–190.
    • (2012) Int J Paediatr Dent , vol.22 , pp. 180-190
    • Lenkkeri, A.M.1    Pienihakkinen, K.2    Hurme, S.3
  • 25
    • 0034076752 scopus 로고    scopus 로고
    • A case of allergic urticaria caused by erythritol
    • Hino H, Kasai S, Hattori N, et al. A case of allergic urticaria caused by erythritol. J Dermatol. 2000;27:163–165.
    • (2000) J Dermatol , vol.27 , pp. 163-165
    • Hino, H.1    Kasai, S.2    Hattori, N.3
  • 26
    • 84908663405 scopus 로고    scopus 로고
    • Case of 5 year-old boy with anaphylaxis due to erythritol with negative prick test and positive intradermal test
    • Kurihara K, Suzuki T, Unno A, et al. Case of 5 year-old boy with anaphylaxis due to erythritol with negative prick test and positive intradermal test. Arerugi. 2013;62:1534–1540.
    • (2013) Arerugi , vol.62 , pp. 1534-1540
    • Kurihara, K.1    Suzuki, T.2    Unno, A.3
  • 27
    • 84878969470 scopus 로고    scopus 로고
    • Bitter sweet”: a child case of erythritol-induced anaphylaxis
    • Shirao K, Inoue M, Tokuda R, et al. “Bitter sweet”: a child case of erythritol-induced anaphylaxis. Allergol Int. 2013;62:269–271.
    • (2013) Allergol Int , vol.62 , pp. 269-271
    • Shirao, K.1    Inoue, M.2    Tokuda, R.3
  • 29
    • 85044562255 scopus 로고
    • Hydrogenation of tartaric acid esters to erythritol. US2571967A
    • Trenner NR, Bacher FA., 1951. Hydrogenation of tartaric acid esters to erythritol. US2571967A.
    • (1951)
    • Trenner, N.R.1    Bacher, F.A.2
  • 30
    • 85044558721 scopus 로고    scopus 로고
    • Method for production of tetritols, specifically meso-erythritol. EP 0767159A1
    • Elseviers M, Roper HWW, Beck RHF, et al. 1997. Method for production of tetritols, specifically meso-erythritol. EP 0767159A1.
    • (1997)
    • Elseviers, M.1    Roper, H.W.W.2    Beck, R.H.F.3
  • 31
    • 85044552486 scopus 로고
    • Hydrogenolysis of dialdehyde starch to erythritol and ethylene glycol. US2783283A
    • Solan JW, Hofreiter BT, Mchltretter CL, et al. 1957. Hydrogenolysis of dialdehyde starch to erythritol and ethylene glycol. US2783283A.
    • (1957)
    • Solan, J.W.1    Hofreiter, B.T.2    Mchltretter, C.L.3
  • 32
    • 85044560876 scopus 로고    scopus 로고
    • Methods for the electrolytic production of erythrose or erythritol. US 2007/0181437 A1
    • Stapley JA, Genders JD, Atherton DM, et al. 2007. Methods for the electrolytic production of erythrose or erythritol. US 2007/0181437 A1.
    • (2007)
    • Stapley, J.A.1    Genders, J.D.2    Atherton, D.M.3
  • 33
    • 85044561643 scopus 로고    scopus 로고
    • [Internet]
    • Dynamic Food Ingredients [Internet]. Available from: http://www.dficorp.com/
  • 34
    • 77950630161 scopus 로고    scopus 로고
    • Biotechnological production of erythritol and its applications
    • Moon HJ, Jeya M, Kim IW, et al. Biotechnological production of erythritol and its applications. Appl Microbiol Biotechnol. 2010;86:1017–1025.
    • (2010) Appl Microbiol Biotechnol , vol.86 , pp. 1017-1025
    • Moon, H.J.1    Jeya, M.2    Kim, I.W.3
  • 35
    • 85044560137 scopus 로고    scopus 로고
    • GRN 000401 [Internet]
    • Agency Response Letter GRAS Notice No
    • Agency Response Letter GRAS Notice No. GRN 000401 [Internet]. Available from: https://www.fda.gov/food/ingredientspackaginglabeling/gras/noticeinventory/ucm300516.htm
    • Available from:
  • 36
    • 85044552791 scopus 로고    scopus 로고
    • GRN 000208 [Internet]
    • Agency Response Letter GRAS Notice No
    • Agency Response Letter GRAS Notice No. GRN 000208 [Internet]. Available from: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/ucm153804.htm
    • Available from:
  • 37
    • 85044555379 scopus 로고    scopus 로고
    • GRN 000382 [Internet]
    • Agency Response Letter GRAS Notice No
    • Agency Response Letter GRAS Notice No. GRN 000382 [Internet]. Available from: https://www.fda.gov/food/ingredientspackaginglabeling/gras/noticeinventory/ucm282595.htm
    • Available from:
  • 38
    • 85044561639 scopus 로고    scopus 로고
    • Process for preparing erythritol crystals. EP0525659 B1
    • Maeda T, Shida M, Ohshima Y, et al. 1997. Process for preparing erythritol crystals. EP0525659 B1.
    • (1997)
    • Maeda, T.1    Shida, M.2    Ohshima, Y.3
  • 39
    • 85044555065 scopus 로고
    • Process for producing erythritol. US4923812
    • Horikita H, Hattori N, Takagi Y, et al. 1990. Process for producing erythritol. US4923812.
    • (1990)
    • Horikita, H.1    Hattori, N.2    Takagi, Y.3
  • 40
    • 0027209897 scopus 로고
    • Pathway and regulation of erythritol formation in Leuconostoc oenos
    • Veiga-Da-Cunha M, Santos H, van Schaftingen E., Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol. 1993;175:3941–3948.
    • (1993) J Bacteriol , vol.175 , pp. 3941-3948
    • Veiga-Da-Cunha, M.1    Santos, H.2    van Schaftingen, E.3
  • 41
    • 33747682944 scopus 로고    scopus 로고
    • Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids
    • Zaunmuller T, Eichert M, Richter H, et al. Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol. 2006;72:421–429.
    • (2006) Appl Microbiol Biotechnol , vol.72 , pp. 421-429
    • Zaunmuller, T.1    Eichert, M.2    Richter, H.3
  • 42
    • 84962789051 scopus 로고    scopus 로고
    • Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F
    • Tyler CA, Kopit L, Doyle C, et al. Polyol production during heterofermentative growth of the plant isolate Lactobacillus florum 2F. J Appl Microbiol. 2016;120:1336–1345.
    • (2016) J Appl Microbiol , vol.120 , pp. 1336-1345
    • Tyler, C.A.1    Kopit, L.2    Doyle, C.3
  • 43
    • 70449403581 scopus 로고    scopus 로고
    • Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42
    • Sawada K, Taki A, Yamakawa T, et al. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J Biosci Bioeng. 2009;108:385–390.
    • (2009) J Biosci Bioeng , vol.108 , pp. 385-390
    • Sawada, K.1    Taki, A.2    Yamakawa, T.3
  • 44
    • 77954575962 scopus 로고    scopus 로고
    • Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110
    • Lee DH, Lee YJ, Ryu YW, et al. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110. Microb Cell Fact. 2010;9:43.
    • (2010) Microb Cell Fact , vol.9 , pp. 43
    • Lee, D.H.1    Lee, Y.J.2    Ryu, Y.W.3
  • 45
    • 0036731755 scopus 로고    scopus 로고
    • Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina
    • Lee JK, Koo BS, Kim SY., Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Appl Environ Microbiol. 2002;68:4534–4538.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 4534-4538
    • Lee, J.K.1    Koo, B.S.2    Kim, S.Y.3
  • 46
    • 84877004821 scopus 로고    scopus 로고
    • Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress
    • Kobayashi Y, Yoshida J, Iwata H, et al. Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. J Biosci Bioeng. 2013;115:645–650.
    • (2013) J Biosci Bioeng , vol.115 , pp. 645-650
    • Kobayashi, Y.1    Yoshida, J.2    Iwata, H.3
  • 47
    • 0038493652 scopus 로고    scopus 로고
    • Purification and characterization of a novel erythrose reductase from Candida magnoliae
    • Lee JK, Kim SY, Ryu YW, et al. Purification and characterization of a novel erythrose reductase from Candida magnoliae. Appl Environ Microbiol. 2003;69:3710–3718.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 3710-3718
    • Lee, J.K.1    Kim, S.Y.2    Ryu, Y.W.3
  • 48
    • 85022100193 scopus 로고    scopus 로고
    • Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis
    • Janek T, Dobrowolski A, Biegalska A, et al. Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Microb Cell Fact. 2017;16:118.
    • (2017) Microb Cell Fact , vol.16 , pp. 118
    • Janek, T.1    Dobrowolski, A.2    Biegalska, A.3
  • 49
    • 33646873503 scopus 로고    scopus 로고
    • Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer
    • Yu JH, Lee DH, Oh YJ, et al. Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl Biochem Biotechnol. 2006;131:870–879.
    • (2006) Appl Biochem Biotechnol , vol.131 , pp. 870-879
    • Yu, J.H.1    Lee, D.H.2    Oh, Y.J.3
  • 50
    • 59149084641 scopus 로고    scopus 로고
    • High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica
    • Rymowicz W, Rywinska A, Marcinkiewicz M., High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol Lett. 2009;31:377–380.
    • (2009) Biotechnol Lett , vol.31 , pp. 377-380
    • Rymowicz, W.1    Rywinska, A.2    Marcinkiewicz, M.3
  • 51
    • 84920854520 scopus 로고    scopus 로고
    • Newly isolated mutant of Yarrowia lipolytica MK1 as a proper host for efficient erythritol biosynthesis from glycerol
    • Mirończuk AM, Dobrowolski A, Rakicka M, et al. Newly isolated mutant of Yarrowia lipolytica MK1 as a proper host for efficient erythritol biosynthesis from glycerol. Process Biochem. 2015b;50:61–68.
    • (2015) Process Biochem , vol.50 , pp. 61-68
    • Mirończuk, A.M.1    Dobrowolski, A.2    Rakicka, M.3
  • 52
    • 85018731047 scopus 로고    scopus 로고
    • Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica
    • Mirończuk AM, Biegalska A, Dobrowolski A., Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica. Biotechnol Biofuels. 2017;10:77.
    • (2017) Biotechnol Biofuels , vol.10 , pp. 77
    • Mirończuk, A.M.1    Biegalska, A.2    Dobrowolski, A.3
  • 53
    • 84887348145 scopus 로고    scopus 로고
    • A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol
    • Yang L-B, Zhan X-B, Zheng Z-Y, et al. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour Technol. 2014;151:120–127.
    • (2014) Bioresour Technol , vol.151 , pp. 120-127
    • Yang, L.-B.1    Zhan, X.-B.2    Zheng, Z.-Y.3
  • 54
    • 84867334334 scopus 로고    scopus 로고
    • Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol
    • Tomaszewska L, Rywinska A, Gładkowski W., Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J Ind Microbiol Biotechnol. 2012;39:1333–1343.
    • (2012) J Ind Microbiol Biotechnol , vol.39 , pp. 1333-1343
    • Tomaszewska, L.1    Rywinska, A.2    Gładkowski, W.3
  • 55
    • 84867162776 scopus 로고    scopus 로고
    • Response to hyperosmotic stress
    • Saito H, Posas F., Response to hyperosmotic stress. Genetics. 2012;192:289–318.
    • (2012) Genetics , vol.192 , pp. 289-318
    • Saito, H.1    Posas, F.2
  • 56
    • 84964265772 scopus 로고    scopus 로고
    • Construction of an efficient mutant strain of Trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol
    • Li L, Yang T, Guo W, et al. Construction of an efficient mutant strain of Trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol. J Microbiol Biotechnol. 2015;26:700–709.
    • (2015) J Microbiol Biotechnol , vol.26 , pp. 700-709
    • Li, L.1    Yang, T.2    Guo, W.3
  • 57
    • 84937412694 scopus 로고    scopus 로고
    • Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure
    • Yang LB, Dai XM, Zheng ZY, et al. Proteomic analysis of erythritol-producing Yarrowia lipolytica from glycerol in response to osmotic pressure. J Microbiol Biotechnol. 2015a;25:1056–1069.
    • (2015) J Microbiol Biotechnol , vol.25 , pp. 1056-1069
    • Yang, L.B.1    Dai, X.M.2    Zheng, Z.Y.3
  • 58
    • 84940892952 scopus 로고    scopus 로고
    • Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliella megachiliensis
    • Kobayashi Y, Iwata H, Yoshida J, et al. Metabolic correlation between polyol and energy-storing carbohydrate under osmotic and oxidative stress condition in Moniliella megachiliensis. J Biosci Bioeng. 2015b;120:405–410.
    • (2015) J Biosci Bioeng , vol.120 , pp. 405-410
    • Kobayashi, Y.1    Iwata, H.2    Yoshida, J.3
  • 59
    • 84908501961 scopus 로고    scopus 로고
    • A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells
    • Tomaszewska L, Rakicka M, Rymowicz W, et al. A comparative study on glycerol metabolism to erythritol and citric acid in Yarrowia lipolytica yeast cells. FEMS Yeast Res. 2014a;14:966–976.
    • (2014) FEMS Yeast Res , vol.14 , pp. 966-976
    • Tomaszewska, L.1    Rakicka, M.2    Rymowicz, W.3
  • 60
    • 0013595670 scopus 로고
    • Breeding of a mutant of Aureobasidium sp. with high erythritol production
    • Ishizuka H, Wako K, Kasumi T, et al. Breeding of a mutant of Aureobasidium sp. with high erythritol production. J Ferment Bioeng. 1989;68:310–314.
    • (1989) J Ferment Bioeng , vol.68 , pp. 310-314
    • Ishizuka, H.1    Wako, K.2    Kasumi, T.3
  • 61
    • 0034926521 scopus 로고    scopus 로고
    • Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration
    • Oh DK, Cho CH, Lee JK, et al. Increased erythritol production in fed-batch cultures of Torula sp. by controlling glucose concentration. J Ind Microbiol Biotechnol. 2001;26:248–252.
    • (2001) J Ind Microbiol Biotechnol , vol.26 , pp. 248-252
    • Oh, D.K.1    Cho, C.H.2    Lee, J.K.3
  • 62
    • 0037010762 scopus 로고    scopus 로고
    • Engineering aspects of the production of sugar alcohols with the osmophilic yeast Moniliella tomentosa var pollinis. Part I. Batch and fed-batch operation in stirred tank
    • Burschapers J, Schustolla D, Schugerl K, et al. Engineering aspects of the production of sugar alcohols with the osmophilic yeast Moniliella tomentosa var pollinis. Part I. Batch and fed-batch operation in stirred tank. Process Biochem. 2002;38:497–506.
    • (2002) Process Biochem , vol.38 , pp. 497-506
    • Burschapers, J.1    Schustolla, D.2    Schugerl, K.3
  • 63
    • 77950917176 scopus 로고    scopus 로고
    • High-level production of erythritol by mutants of osmophilic Moniliella sp
    • Lin S-J, Wen C-Y, Wang P-M, et al. High-level production of erythritol by mutants of osmophilic Moniliella sp. Process Biochem. 2010;45:973–979.
    • (2010) Process Biochem , vol.45 , pp. 973-979
    • Lin, S.-J.1    Wen, C.-Y.2    Wang, P.-M.3
  • 64
    • 0033760876 scopus 로고    scopus 로고
    • Optimization of erythritol production by Candida magnoliae in fed-batch culture
    • Ryu YW, Park CY, Park JB, et al. Optimization of erythritol production by Candida magnoliae in fed-batch culture. J Ind Microbiol Biotechnol. 2000;25:100–103.
    • (2000) J Ind Microbiol Biotechnol , vol.25 , pp. 100-103
    • Ryu, Y.W.1    Park, C.Y.2    Park, J.B.3
  • 65
    • 0346463113 scopus 로고    scopus 로고
    • Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae
    • Kohl ES, Leet TH, Lee DY, et al. Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnol Lett. 2003;25:2103–2105.
    • (2003) Biotechnol Lett , vol.25 , pp. 2103-2105
    • Kohl, E.S.1    Leet, T.H.2    Lee, D.Y.3
  • 66
    • 65149098070 scopus 로고    scopus 로고
    • Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level
    • Jeya M, Lee KM, Tiwari MK, et al. Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Appl Microbiol Biotechnol. 2009;83:225–231.
    • (2009) Appl Microbiol Biotechnol , vol.83 , pp. 225-231
    • Jeya, M.1    Lee, K.M.2    Tiwari, M.K.3
  • 67
    • 84891862050 scopus 로고    scopus 로고
    • Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures
    • Mirończuk AM, Furgala J, Rakicka M, et al. Enhanced production of erythritol by Yarrowia lipolytica on glycerol in repeated batch cultures. J Ind Microbiol Biotechnol. 2014;41:57–64.
    • (2014) J Ind Microbiol Biotechnol , vol.41 , pp. 57-64
    • Mirończuk, A.M.1    Furgala, J.2    Rakicka, M.3
  • 68
    • 84942532102 scopus 로고    scopus 로고
    • A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol
    • Mirończuk AM, Rakicka M, Biegalska A, et al. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresour Technol. 2015;198:445–455.
    • (2015) Bioresour Technol , vol.198 , pp. 445-455
    • Mirończuk, A.M.1    Rakicka, M.2    Biegalska, A.3
  • 69
    • 84978177090 scopus 로고    scopus 로고
    • Improving erythritol production of Aureobasidium pullulans from xylose by mutagenesis and medium optimization
    • Guo J, Li J, Chen Y, et al. Improving erythritol production of Aureobasidium pullulans from xylose by mutagenesis and medium optimization. Appl Biochem Biotechnol. 2016;180:717–727.
    • (2016) Appl Biochem Biotechnol , vol.180 , pp. 717-727
    • Guo, J.1    Li, J.2    Chen, Y.3
  • 70
    • 85044560668 scopus 로고    scopus 로고
    • Process for producing and recovering erythritol from culture medium containing the same. US 6440712 B2
    • de Troostembergh JCG, Debonne I, Obyn W., 2002. Process for producing and recovering erythritol from culture medium containing the same. US 6440712 B2.
    • (2002)
    • de Troostembergh, J.C.G.1    Debonne, I.2    Obyn, W.3
  • 71
    • 84958012360 scopus 로고    scopus 로고
    • Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica
    • Dobrowolski A, Mitula P, Rymowicz W, et al. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresour Technol. 2016;207:237–243.
    • (2016) Bioresour Technol , vol.207 , pp. 237-243
    • Dobrowolski, A.1    Mitula, P.2    Rymowicz, W.3
  • 72
    • 84926407034 scopus 로고    scopus 로고
    • Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source
    • Kobayashi Y, Iwata H, Mizushima D, et al. Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Lett Appl Microbiol. 2015a;60:475–480.
    • (2015) Lett Appl Microbiol , vol.60 , pp. 475-480
    • Kobayashi, Y.1    Iwata, H.2    Mizushima, D.3
  • 73
    • 85044561359 scopus 로고    scopus 로고
    • Process for producing high-purity erythritol crystal. US6030820 A
    • Morioka S, Abe T, Maeda T, et al. 2000. Process for producing high-purity erythritol crystal. US6030820 A.
    • (2000)
    • Morioka, S.1    Abe, T.2    Maeda, T.3
  • 74
    • 84899980421 scopus 로고    scopus 로고
    • High selectivity of erythritol production from glycerol by Yarrowia lipolytica
    • Tomaszewska L, Rywińska A, Rymowicz W., High selectivity of erythritol production from glycerol by Yarrowia lipolytica. Biomass Bioenergy. 2014c;64:309–320.
    • (2014) Biomass Bioenergy , vol.64 , pp. 309-320
    • Tomaszewska, L.1    Rywińska, A.2    Rymowicz, W.3
  • 75
    • 85044562568 scopus 로고    scopus 로고
    • Process for preparing erythritol using novel cell of Pichia. US 6001616 A
    • KIM SY, Oh DK, Jung SR., 1999. Process for preparing erythritol using novel cell of Pichia. US 6001616 A.
    • (1999)
    • Kim, S.1    Oh, D.K.2    Jung, S.R.3
  • 76
    • 84951735773 scopus 로고    scopus 로고
    • Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure
    • Tomaszewska-Hetman L, Rywińska A., Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: effect of osmotic pressure. Chem Pap. 2016;70:272–283.
    • (2016) Chem Pap , vol.70 , pp. 272-283
    • Tomaszewska-Hetman, L.1    Rywińska, A.2
  • 77
    • 84911406068 scopus 로고    scopus 로고
    • Optimization of medium composition for erythritol production from glycerol by Yarrowia lipolytica using response surface methodology
    • Rywinska A, Marcinkiewicz M, Cibis E, et al. Optimization of medium composition for erythritol production from glycerol by Yarrowia lipolytica using response surface methodology. Prep Biochem Biotechnol. 2015;45:515–529.
    • (2015) Prep Biochem Biotechnol , vol.45 , pp. 515-529
    • Rywinska, A.1    Marcinkiewicz, M.2    Cibis, E.3
  • 78
    • 84975789694 scopus 로고    scopus 로고
    • Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol
    • Yang LB, Zhan XB, Zhu L, et al. Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol. Prep Biochem Biotechnol. 2015b;46:376–383.
    • (2015) Prep Biochem Biotechnol , vol.46 , pp. 376-383
    • Yang, L.B.1    Zhan, X.B.2    Zhu, L.3
  • 79
    • 84973171153 scopus 로고    scopus 로고
    • Enhanced production of erythritol and mannitol by Yarrowia lipolytica in media containing surfactants
    • Rakicka M, Rywinska A, Cybulski K, et al. Enhanced production of erythritol and mannitol by Yarrowia lipolytica in media containing surfactants. Braz J Microbiol. 2016b;47:417–423.
    • (2016) Braz J Microbiol , vol.47 , pp. 417-423
    • Rakicka, M.1    Rywinska, A.2    Cybulski, K.3
  • 80
    • 85044557181 scopus 로고    scopus 로고
    • Method producing erythritol by repeated fed-batch fermentation. 6 365 383 B1
    • Segueilha L., 2002. Method producing erythritol by repeated fed-batch fermentation. 6 365 383 B1.
    • (2002)
    • Segueilha, L.1
  • 81
    • 84995642270 scopus 로고    scopus 로고
    • Technology of efficient continuous erythritol production from glycerol
    • Rakicka M, Rukowicz B, Rywińska A, et al. Technology of efficient continuous erythritol production from glycerol. J Clean Prod. 2016a;139:905–913.
    • (2016) J Clean Prod , vol.139 , pp. 905-913
    • Rakicka, M.1    Rukowicz, B.2    Rywińska, A.3
  • 82
    • 0033929450 scopus 로고    scopus 로고
    • Increased erythritol production in Torula sp. by Mn2 + and Cu2+
    • Lee J-K, Ha S-J, Kim S-Y, et al. Increased erythritol production in Torula sp. by Mn2 + and Cu2+. Biotechnol Lett. 2000;22:983–986.
    • (2000) Biotechnol Lett , vol.22 , pp. 983-986
    • Lee, J.-K.1    Ha, S.-J.2    Kim, S.-Y.3
  • 83
    • 84899483231 scopus 로고    scopus 로고
    • Mineral supplementation increases erythrose reductase activity in erythritol biosynthesis from glycerol by Yarrowia lipolytica
    • Tomaszewska L, Rymowicz W, Rywińska A., Mineral supplementation increases erythrose reductase activity in erythritol biosynthesis from glycerol by Yarrowia lipolytica. Appl Biochem Biotechnol. 2014b;172:3069–3078.
    • (2014) Appl Biochem Biotechnol , vol.172 , pp. 3069-3078
    • Tomaszewska, L.1    Rymowicz, W.2    Rywińska, A.3
  • 84
    • 0000474085 scopus 로고
    • Erythritol production by a yeastlike fungus
    • Hajny GJ, Smith JH, Garver JC. Erythritol production by a yeastlike fungus. Appl Microbiol. 1964;12:240–246.
    • (1964) Appl Microbiol , vol.12 , pp. 240-246
    • Hajny, G.J.1    Smith, J.H.2    Garver, J.C.3
  • 85
    • 0035045277 scopus 로고    scopus 로고
    • Increased erythritol production in Torula sp. with inositol and phytic acid
    • Lee J-K, Ha S-J, KIM S-Y, et al. Increased erythritol production in Torula sp. with inositol and phytic acid. Biotechnol Lett. 2001;23:497–500.
    • (2001) Biotechnol Lett , vol.23 , pp. 497-500
    • Lee, J.-K.1    Ha, S.-J.2    Kim, S.3
  • 86
    • 79956031399 scopus 로고    scopus 로고
    • Strain improvement and statistical media optimization for enhanced erythritol production with minimal by-products from Candida magnoliae mutant R23
    • Savergave LS, Gadre RV, Vaidya BK, et al. Strain improvement and statistical media optimization for enhanced erythritol production with minimal by-products from Candida magnoliae mutant R23. Biochem Eng J. 2011;55:92–100.
    • (2011) Biochem Eng J , vol.55 , pp. 92-100
    • Savergave, L.S.1    Gadre, R.V.2    Vaidya, B.K.3
  • 87
    • 84984837660 scopus 로고    scopus 로고
    • A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol
    • Mirończuk AM, Rzechonek DA, Biegalska A, et al. A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol. Biotechnol Biofuels. 2016;9:180.
    • (2016) Biotechnol Biofuels , vol.9 , pp. 180
    • Mirończuk, A.M.1    Rzechonek, D.A.2    Biegalska, A.3
  • 88
    • 85019592097 scopus 로고    scopus 로고
    • Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica
    • Carly F, Gamboa-Melendez H, Vandermies M, et al. Identification and characterization of EYK1, a key gene for erythritol catabolism in Yarrowia lipolytica. Appl Microbiol Biotechnol. 2017;101:6587–6596.
    • (2017) Appl Microbiol Biotechnol , vol.101 , pp. 6587-6596
    • Carly, F.1    Gamboa-Melendez, H.2    Vandermies, M.3
  • 89
    • 85021690567 scopus 로고    scopus 로고
    • Polyol production from waste materials by genetically modified Yarrowia lipolytica
    • Rakicka M, Biegalska A, Rymowicz W, et al. Polyol production from waste materials by genetically modified Yarrowia lipolytica. Bioresour Technol. 2017;243:393–399.
    • (2017) Bioresour Technol , vol.243 , pp. 393-399
    • Rakicka, M.1    Biegalska, A.2    Rymowicz, W.3
  • 90
    • 84887131439 scopus 로고    scopus 로고
    • Characterization of erythrose reductases from filamentous fungi
    • Jovanovic B, Mach RL, Mach-Aigner AR., Characterization of erythrose reductases from filamentous fungi. AMB Express. 2013;3:43.
    • (2013) AMB Express , vol.3 , pp. 43
    • Jovanovic, B.1    Mach, R.L.2    Mach-Aigner, A.R.3
  • 92
    • 84962881217 scopus 로고    scopus 로고
    • Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol
    • van der Woude AD, Perez Gallego R, Vreugdenhil A, et al. Genetic engineering of Synechocystis PCC6803 for the photoautotrophic production of the sweetener erythritol. Microb Cell Fact. 2016;15:60.
    • (2016) Microb Cell Fact , vol.15 , pp. 60
    • van der Woude, A.D.1    Perez Gallego, R.2    Vreugdenhil, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.