메뉴 건너뛰기




Volumn 25, Issue 7, 2015, Pages 1056-1069

Proteomic analysis of erythritol-producing yarrowia lipolytica from glycerol in response to osmotic pressure

Author keywords

Erythritol; Osmotic stress response; Proteomics; Yarrowia lipolytica

Indexed keywords

ERYTHRITOL; GLYCEROL; TRANSKETOLASE; TRIOSEPHOSPHATE ISOMERASE; FUNGAL PROTEIN; PROTEOME;

EID: 84937412694     PISSN: 10177825     EISSN: 17388872     Source Type: Journal    
DOI: 10.4014/jmb.1412.12026     Document Type: Article
Times cited : (50)

References (61)
  • 2
    • 2942564430 scopus 로고    scopus 로고
    • Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence
    • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649
    • (2004) Proteomics , vol.4 , pp. 1633-1649
    • Blom, N.1    Sicheritz-Ponten, T.2    Gupta, R.3    Gammeltoft, S.4    Brunak, S.5
  • 3
    • 0026596917 scopus 로고
    • Physiology of osmotolerance in fungi. Adv. Microb
    • Blomberg A, Adler L. 1992. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 33: 145
    • (1992) Physiol , vol.33
    • Blomberg, A.1    Adler, L.2
  • 5
    • 33646127577 scopus 로고    scopus 로고
    • Molecular chaperones and protein quality control
    • Bukau B, Weissman J, Horwich A. 2006. Molecular chaperones and protein quality control. Cell 125: 443-451
    • (2006) Cell , vol.125 , pp. 443-451
    • Bukau, B.1    Weissman, J.2    Horwich, A.3
  • 7
    • 33847168661 scopus 로고    scopus 로고
    • Functional studies of aldo-keto reductases in Saccharomyces cerevisiae
    • Chang Q, Griest TA, Harter TM, Petrash JM. 2007. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1773: 321-329
    • (2007) BBA Mol. Cell Res , vol.1773 , pp. 321-329
    • Chang, Q.1    Griest, T.A.2    Harter, T.M.3    Petrash, J.M.4
  • 8
    • 38349022711 scopus 로고    scopus 로고
    • Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae
    • Chang Q, Petrash JM. 2008. Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1783: 237-245
    • (2008) BBA Mol. Cell Res , vol.1783 , pp. 237-245
    • Chang, Q.1    Petrash, J.M.2
  • 9
    • 0022751204 scopus 로고
    • Identification of a regulatory region that mediates glucosedependent induction of the Saccharomyces cerevisiae enolase gene ENO2
    • Cohen R, Holland JP, Yokoi T, Holland MJ. 1986. Identification of a regulatory region that mediates glucosedependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol. Cell. Biol. 6: 2287-2297
    • (1986) Mol. Cell. Biol , vol.6 , pp. 2287-2297
    • Cohen, R.1    Holland, J.P.2    Yokoi, T.3    Holland, M.J.4
  • 10
    • 0030250395 scopus 로고    scopus 로고
    • Glycerol production in a triose phosphate isomerase-deficient mutant of Saccharomyces cerevisiae
    • Compagno C, Boschi F, Ranzi BM. 1996. Glycerol production in a triose phosphate isomerase-deficient mutant of Saccharomyces cerevisiae. Biotechnol. Progr. 12: 591-595
    • (1996) Biotechnol. Progr , vol.12 , pp. 591-595
    • Compagno, C.1    Boschi, F.2    Ranzi, B.M.3
  • 11
    • 0000596147 scopus 로고
    • The Biochemistry of Plants, Academic Press, New York
    • Cossins EA. 1980. One-carbon metabolism, pp. 365-418. The Biochemistry of Plants, Vol 2. Academic Press, New York.
    • (1980) One-Carbon Metabolism , vol.2 , pp. 365-418
    • Cossins, E.A.1
  • 12
    • 0023182502 scopus 로고
    • SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth
    • Craig EA, Kramer J, Kosic-Smithers J. 1987. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84: 4156-4160
    • (1987) Proc. Natl. Acad. Sci. USA , vol.84 , pp. 4156-4160
    • Craig, E.A.1    Kramer, J.2    Kosic-Smithers, J.3
  • 13
    • 0035186283 scopus 로고    scopus 로고
    • Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae
    • De Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18: 1413-1428
    • (2001) Yeast , vol.18 , pp. 1413-1428
    • De Nobel, H.1    Lawrie, L.2    Brul, S.3    Klis, F.4    Davis, M.5    Alloush, H.6    Coote, P.7
  • 14
    • 33748309395 scopus 로고    scopus 로고
    • Functions and metabolism of sphingolipids in Saccharomyces cerevisiae
    • Dickson RC, Sumanasekera C, Lester RL. 2006. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45: 447-465
    • (2006) Prog. Lipid Res , vol.45 , pp. 447-465
    • Dickson, R.C.1    Sumanasekera, C.2    Lester, R.L.3
  • 15
    • 27644495532 scopus 로고    scopus 로고
    • Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle’s loop (TALH) cells
    • Dihazi H, Asif AR, Agarwal NK, Doncheva Y, Müller GA. 2005. Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle’s loop (TALH) cells. Mol. Cell. Proteomics 4: 1445-1458
    • (2005) Mol. Cell. Proteomics , vol.4 , pp. 1445-1458
    • Dihazi, H.1    Asif, A.R.2    Agarwal, N.K.3    Doncheva, Y.4    Müller, G.A.5
  • 16
    • 77952944680 scopus 로고    scopus 로고
    • The response to unfolded protein is involved in osmotolerance of Pichia pastoris
    • Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, et al. 2010. The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11: 207
    • (2010) BMC Genomics , vol.11 , pp. 207
    • Dragosits, M.1    Stadlmann, J.2    Graf, A.3    Gasser, B.4    Maurer, M.5    Sauer, M.6
  • 17
    • 0037027536 scopus 로고    scopus 로고
    • Microbial aldo-keto reductases
    • Ellis EM. 2002. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 216: 123-131
    • (2002) FEMS Microbiol. Lett , vol.216 , pp. 123-131
    • Ellis, E.M.1
  • 18
    • 84870977339 scopus 로고    scopus 로고
    • The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate
    • Fazius F, Shelest E, Gebhardt P, Brock M. 2012. The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol. 86: 1508-1530
    • (2012) Mol. Microbiol , vol.86 , pp. 1508-1530
    • Fazius, F.1    Shelest, E.2    Gebhardt, P.3    Brock, M.4
  • 19
    • 0032768193 scopus 로고    scopus 로고
    • Three genes whose expression is induced by stress in Saccharomyces cerevisiae
    • Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892
    • (1999) Yeast , vol.15 , pp. 879-892
    • Garay-Arroyo, A.1    Covarrubias, A.A.2
  • 20
    • 1242339581 scopus 로고    scopus 로고
    • Twodimensional reference map of Candida albicans hyphal forms
    • Hernandez R, Nombela C, Diez-Orejas R, Gil C. 2004. Twodimensional reference map of Candida albicans hyphal forms. Proteomics 4: 374-382
    • (2004) Proteomics , vol.4 , pp. 374-382
    • Hernandez, R.1    Nombela, C.2    Diez-Orejas, R.3    Gil, C.4
  • 21
    • 0026787869 scopus 로고
    • Stress-induced proteolysis in yeast
    • Hilt W, Wolf DH. 1992. Stress-induced proteolysis in yeast. Mol. Microbiol. 6: 2437-2442
    • (1992) Mol. Microbiol , vol.6 , pp. 2437-2442
    • Hilt, W.1    Wolf, D.H.2
  • 22
    • 64749097047 scopus 로고    scopus 로고
    • Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae
    • Hirasawa T, Yamada K, Nagahisa K, Dinh TN, Furusawa C, Katakura Y, et al. 2009. Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae. Process. Biochem. 44: 647-653
    • (2009) Process. Biochem , vol.44 , pp. 647-653
    • Hirasawa, T.1    Yamada, K.2    Nagahisa, K.3    Dinh, T.N.4    Furusawa, C.5    Katakura, Y.6
  • 23
    • 0036282743 scopus 로고    scopus 로고
    • Osmotic stress signaling and osmoadaptation in yeasts
    • Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372
    • (2002) Microbiol. Mol. Biol. Rev , vol.66 , pp. 300-372
    • Hohmann, S.1
  • 25
    • 84872594118 scopus 로고    scopus 로고
    • Proteome analysis of metabolic proteins (PI 4-7) in barley (Hordeum vulgare) malts and initial application in malt quality discrimination
    • Jin Z, Mu Y-W, Sun J-Y, Li X-M, Gao X-L, Lu J. 2012. Proteome analysis of metabolic proteins (pI 4-7) in barley (Hordeum vulgare) malts and initial application in malt quality discrimination. J. Agric. Food Chem. 61: 402-409
    • (2012) J. Agric. Food Chem , vol.61 , pp. 402-409
    • Jin, Z.1    Mu, Y.-W.2    Sun, J.-Y.3    Li, X.-M.4    Gao, X.-L.5    Lu, J.6
  • 26
    • 84880042961 scopus 로고    scopus 로고
    • Investigation of protein expression profiles of erythritolproducing Candida magnoliae in response to glucose perturbation. Enzyme Microb
    • Kim HJ, Lee H-R, Kim CS, Jin Y-S, Seo J-H. 2013. Investigation of protein expression profiles of erythritolproducing Candida magnoliae in response to glucose perturbation. Enzyme Microb. Technol. 53: 174-180
    • (2013) Technol , vol.53 , pp. 174-180
    • Kim, H.J.1    Lee, H.-R.2    Kim, C.S.3    Jin, Y.-S.4    Seo, J.-H.5
  • 27
    • 0035252367 scopus 로고    scopus 로고
    • Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb
    • Kim SI, Choi HK, Kim JH, Lee HS, Hong SS. 2001. Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb. Technol. 28: 202-209
    • (2001) Technol , vol.28 , pp. 202-209
    • Kim, S.I.1    Choi, H.K.2    Kim, J.H.3    Lee, H.S.4    Hong, S.S.5
  • 29
    • 1842739202 scopus 로고    scopus 로고
    • Alterations in protein synthesis and levels of heat shock 70 proteins in response to salt stress of the halotolerant yeast Rhodotorula mucilaginosa
    • Lahav R, Nejidat A, Abeliovich A. 2004. Alterations in protein synthesis and levels of heat shock 70 proteins in response to salt stress of the halotolerant yeast Rhodotorula mucilaginosa. Antonie Van Leeuwenhoek 85: 259-269
    • (2004) Antonie Van Leeuwenhoek , vol.85 , pp. 259-269
    • Lahav, R.1    Nejidat, A.2    Abeliovich, A.3
  • 30
    • 0023176894 scopus 로고
    • Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress
    • Larsson C, Gustafsson L. 1987. Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 147: 358-363
    • (1987) Arch. Microbiol , vol.147 , pp. 358-363
    • Larsson, C.1    Gustafsson, L.2
  • 31
    • 84859112544 scopus 로고    scopus 로고
    • Glucose regulated protein 78: A critical link between tumor microenvironment and cancer hallmarks
    • Li Z, Li Z. 2012. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. BBA Rev. Cancer 1826: 13-22
    • (2012) BBA Rev. Cancer , vol.1826 , pp. 13-22
    • Li, Z.1    Li, Z.2
  • 33
    • 0037338365 scopus 로고    scopus 로고
    • Proteomic analysis of posttranslational modifications
    • Mann M, Jensen ON. 2003. Proteomic analysis of posttranslational modifications. Nat. Biotechnol. 21: 255-261
    • (2003) Nat. Biotechnol , vol.21 , pp. 255-261
    • Mann, M.1    Jensen, O.N.2
  • 34
    • 76449085181 scopus 로고    scopus 로고
    • A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica
    • Mansour S, Bailly J, Delettre J, Bonnarme P. 2009. A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica. Proteomics 9: 4714-4725
    • (2009) Proteomics , vol.9 , pp. 4714-4725
    • Mansour, S.1    Bailly, J.2    Delettre, J.3    Bonnarme, P.4
  • 35
    • 0016823338 scopus 로고
    • Methionine biosynthesis in Saccharomyces cerevisiae
    • Masselot M, de Robichon-Szulmajster H. 1975. Methionine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. 139: 121-132
    • (1975) Mol. Gen. Genet , vol.139 , pp. 121-132
    • Masselot, M.1    De Robichon-Szulmajster, H.2
  • 36
    • 65549106475 scopus 로고    scopus 로고
    • Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae
    • Miyagi H, Kawai S, Murata K. 2009. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 284: 7553-7560
    • (2009) J. Biol. Chem , vol.284 , pp. 7553-7560
    • Miyagi, H.1    Kawai, S.2    Murata, K.3
  • 37
    • 77950630161 scopus 로고    scopus 로고
    • Biotechnological production of erythritol and its applications
    • Moon HJ, Jeya M, Kim IW, Lee JK. 2010. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 86: 1017-1025
    • (2010) Appl. Microbiol. Biotechnol , vol.86 , pp. 1017-1025
    • Moon, H.J.1    Jeya, M.2    Kim, I.W.3    Lee, J.K.4
  • 38
    • 84859586432 scopus 로고    scopus 로고
    • The response to heat shock and oxidative stress in Saccharomyces cerevisiae
    • Morano KA, Grant CM, Moye-Rowley WS. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190: 1157-1195
    • (2012) Genetics , vol.190 , pp. 1157-1195
    • Morano, K.A.1    Grant, C.M.2    Moye-Rowley, W.S.3
  • 39
    • 36148950640 scopus 로고    scopus 로고
    • Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica
    • Morin M, Monteoliva L, Insenser M, Gil C, Dominguez A. 2007. Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. J. Mass Spectrom. 42: 1453-1462
    • (2007) J. Mass Spectrom , vol.42 , pp. 1453-1462
    • Morin, M.1    Monteoliva, L.2    Insenser, M.3    Gil, C.4    Dominguez, A.5
  • 40
    • 0024433666 scopus 로고
    • Osmotic regulation of aldose reductase protein synthesis in renal medullary cells
    • Moriyama T, Garcia-Perez A, Burg M. 1989. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J. Biol. Chem. 264: 16810-16814
    • (1989) J. Biol. Chem , vol.264 , pp. 16810-16814
    • Moriyama, T.1    Garcia-Perez, A.2    Burg, M.3
  • 41
    • 1042275615 scopus 로고    scopus 로고
    • Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry
    • Norregaard Jensen O. 2004. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8: 33-41
    • (2004) Curr. Opin. Chem. Biol , vol.8 , pp. 33-41
    • Norregaard Jensen, O.1
  • 42
    • 0024469206 scopus 로고
    • Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae
    • Nicolet CM, Craig EA. 1989. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638-3646
    • (1989) Mol. Cell. Biol , vol.9 , pp. 3638-3646
    • Nicolet, C.M.1    Craig, E.A.2
  • 43
    • 0031041461 scopus 로고    scopus 로고
    • Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl - Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway
    • Norbeck J, Blomberg A. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl - Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554
    • (1997) J. Biol. Chem , vol.272 , pp. 5544-5554
    • Norbeck, J.1    Blomberg, A.2
  • 44
    • 32044446956 scopus 로고    scopus 로고
    • Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making
    • Perez-Torrado R, Bruno-Barcena JM, Matallana E. 2005. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl. Environ. Microbiol. 71: 6831-6837
    • (2005) Appl. Environ. Microbiol , vol.71 , pp. 6831-6837
    • Perez-Torrado, R.1    Bruno-Barcena, J.M.2    Matallana, E.3
  • 45
    • 0034708436 scopus 로고    scopus 로고
    • The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathwaydependent genes
    • Rep M, Krantz M, Thevelein J M, Hohmann S. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathwaydependent genes. J. Biol. Chem. 275: 8290-8300
    • (2000) J. Biol. Chem , vol.275 , pp. 8290-8300
    • Rep, M.1    Krantz, M.2    Thevelein, J.M.3    Hohmann, S.4
  • 46
    • 0024338964 scopus 로고
    • KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene
    • Rose MD, Misra LM, Vogel JP. 1989. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57: 1211-1221
    • (1989) Cell , vol.57 , pp. 1211-1221
    • Rose, M.D.1    Misra, L.M.2    Vogel, J.P.3
  • 47
    • 59149084641 scopus 로고    scopus 로고
    • Highyield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica
    • Rymowicz W, Rywinska A, Marcinkiewicz M. 2009. Highyield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett. 31: 377-380
    • (2009) Biotechnol. Lett , vol.31 , pp. 377-380
    • Rymowicz, W.1    Rywinska, A.2    Marcinkiewicz, M.3
  • 49
    • 70449403581 scopus 로고    scopus 로고
    • Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42
    • Sawada K, Taki A, Yamakawa T, Seki M. 2009. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J. Biosci. Bioeng. 108: 385-390
    • (2009) J. Biosci. Bioeng , vol.108 , pp. 385-390
    • Sawada, K.1    Taki, A.2    Yamakawa, T.3    Seki, M.4
  • 50
    • 0031468145 scopus 로고    scopus 로고
    • Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae
    • Schneider R, Brors B, Burger F, Camrath S, Weiss H. 1997. Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae. Curr. Genet. 32: 384-388
    • (1997) Curr. Genet , vol.32 , pp. 384-388
    • Schneider, R.1    Brors, B.2    Burger, F.3    Camrath, S.4    Weiss, H.5
  • 51
    • 0024459376 scopus 로고
    • Lysosomal (Vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival
    • Teichert U, Mechler B, Müller H, Wolf D. 1989. Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J. Biol. Chem. 264: 16037-16045
    • (1989) J. Biol. Chem , vol.264 , pp. 16037-16045
    • Teichert, U.1    Mechler, B.2    Müller, H.3    Wolf, D.4
  • 52
    • 84867334334 scopus 로고    scopus 로고
    • Production of erythritol and mannitol by Yarrowia lipolyticayeast in media containing glycerol
    • Tomaszewska L, Rywinska A, Gladkowski W. 2012. Production of erythritol and mannitol by Yarrowia lipolyticayeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 39: 1333-1343
    • (2012) J. Ind. Microbiol. Biotechnol , vol.39 , pp. 1333-1343
    • Tomaszewska, L.1    Rywinska, A.2    Gladkowski, W.3
  • 53
    • 0028820129 scopus 로고
    • The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A
    • Varela J, Praekelt UM, Meacock PA, Planta RJ, Mager WH. 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15: 6232-6245
    • (1995) Mol. Cell. Biol , vol.15 , pp. 6232-6245
    • Varela, J.1    Praekelt, U.M.2    Meacock, P.A.3    Planta, R.J.4    Mager, W.H.5
  • 54
    • 33749602970 scopus 로고    scopus 로고
    • Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli
    • Weber A, Kogl SA, Jung K. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol. 188: 7165-7175
    • (2006) J. Bacteriol , vol.188 , pp. 7165-7175
    • Weber, A.1    Kogl, S.A.2    Jung, K.3
  • 55
    • 2542504409 scopus 로고    scopus 로고
    • Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable
    • Wong C-M, Siu K-L, Jin D-Y. 2004. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279: 23207-23213
    • (2004) J. Biol. Chem , vol.279 , pp. 23207-23213
    • Wong, C.-M.1    Siu, K.-L.2    Jin, D.-Y.3
  • 56
    • 84872182215 scopus 로고    scopus 로고
    • Morphology engineering - Osmolality and its effect on Aspergillus niger morphology and productivity
    • Wucherpfennig T, Hestler T, Krull R. 2011. Morphology engineering - osmolality and its effect on Aspergillus niger morphology and productivity. Microb. Cell Fact. 10: 58
    • (2011) Microb. Cell Fact , vol.10 , pp. 58
    • Wucherpfennig, T.1    Hestler, T.2    Krull, R.3
  • 57
    • 79955596510 scopus 로고    scopus 로고
    • Arginine: A novel compatible solute to protect Candida glabrata against hyperosmotic stress
    • Xu S, Zhou J, Liu L, Chen J. 2011. Arginine: a novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem. 46: 1230-1235
    • (2011) Process Biochem , vol.46 , pp. 1230-1235
    • Xu, S.1    Zhou, J.2    Liu, L.3    Chen, J.4
  • 58
    • 13244258357 scopus 로고    scopus 로고
    • Proteomic analysis of salt stress-responsive proteins in rice root
    • Yan S, Tang Z, Su W, Sun W. 2005. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5: 235-244
    • (2005) Proteomics , vol.5 , pp. 235-244
    • Yan, S.1    Tang, Z.2    Su, W.3    Sun, W.4
  • 59
    • 24644450812 scopus 로고    scopus 로고
    • Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses
    • Yancey PH. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208: 2819-2830
    • (2005) J. Exp. Biol , vol.208 , pp. 2819-2830
    • Yancey, P.H.1
  • 60
    • 84887348145 scopus 로고    scopus 로고
    • A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol
    • Yang L-B, Zhan X-B, Zheng Z-Y, Wu J-R, Gao M-J, Lin C-C. 2014. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 151: 120-127
    • (2014) Bioresour. Technol , vol.151 , pp. 120-127
    • Yang, L.-B.1    Zhan, X.-B.2    Zheng, Z.-Y.3    Wu, J.-R.4    Gao, M.-J.5    Lin, C.-C.6
  • 61
    • 2542499556 scopus 로고    scopus 로고
    • Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p
    • Zhang X, Lester RL, Dickson RC. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J. Biol. Chem. 279: 22030-22038.  
    • (2004) J. Biol. Chem , vol.279 , pp. 22030-22038
    • Zhang, X.1    Lester, R.L.2    Dickson, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.