-
1
-
-
17844373552
-
Protein secondary structure prediction with dihedral angles
-
Wood MJ, Hirst JD. Protein secondary structure prediction with dihedral angles. PROTEINS: Struct Funct Bioinformatics. 2005;59(3):476-81.
-
(2005)
PROTEINS: Struct Funct Bioinformatics
, vol.59
, Issue.3
, pp. 476-481
-
-
Wood, M.J.1
Hirst, J.D.2
-
2
-
-
44949201613
-
Real-value prediction of backbone torsion angles
-
Xue B, Dor O, Faraggi E, Zhou Y. Real-value prediction of backbone torsion angles. Proteins: Struct Funct Bioinformatics. 2008;72(1):427-33.
-
(2008)
Proteins: Struct Funct Bioinformatics
, vol.72
, Issue.1
, pp. 427-433
-
-
Xue, B.1
Dor, O.2
Faraggi, E.3
Zhou, Y.4
-
3
-
-
54849412811
-
ANGLOR: a composite machine-learning algorithm for protein backbone torsion angle prediction
-
Wu S, Zhang Y. ANGLOR: a composite machine-learning algorithm for protein backbone torsion angle prediction. PLoS One. 2008;3(10):e3400.
-
(2008)
PLoS One
, vol.3
, Issue.10
-
-
Wu, S.1
Zhang, Y.2
-
4
-
-
61449123967
-
Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network
-
Faraggi E, Xue B, Zhou Y. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins: Struct Funct Bioinformatics. 2009;74
-
(2009)
Proteins: Struct Funct Bioinformatics
, vol.74
-
-
Faraggi, E.1
Xue, B.2
Zhou, Y.3
-
5
-
-
84863073485
-
TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences
-
Song J, Tan H, Wang M, Webb GI, Akutsu T. TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences. PLoS One. 2012;7(2):e30361.
-
(2012)
PLoS One
, vol.7
, Issue.2
-
-
Song, J.1
Tan, H.2
Wang, M.3
Webb, G.I.4
Akutsu, T.5
-
6
-
-
83855162773
-
SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
-
Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y. SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem. 2012;33(3):259-67.
-
(2012)
J Comput Chem
, vol.33
, Issue.3
, pp. 259-267
-
-
Faraggi, E.1
Zhang, T.2
Yang, Y.3
Kurgan, L.4
Zhou, Y.5
-
7
-
-
70350738241
-
Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
-
Faraggi E, Yang Y, Zhang S, Zhou Y. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. Structure. 2009;17(11):1515-27.
-
(2009)
Structure
, vol.17
, Issue.11
, pp. 1515-1527
-
-
Faraggi, E.1
Yang, Y.2
Zhang, S.3
Zhou, Y.4
-
8
-
-
84963976648
-
Evaluation of protein dihedral angle prediction methods
-
Singh H, Singh S, Raghava GP. Evaluation of protein dihedral angle prediction methods. PLoS One. 2014;9(8):e105667.
-
(2014)
PLoS One
, vol.9
, Issue.8
-
-
Singh, H.1
Singh, S.2
Raghava, G.P.3
-
9
-
-
84949267267
-
Improving protein fold recognition by deep learning networks
-
Jo T, Hou J, Eickholt J, Cheng J. Improving protein fold recognition by deep learning networks. Sci Rep. 2015;5
-
(2015)
Sci Rep
, vol.5
-
-
Jo, T.1
Hou, J.2
Eickholt, J.3
Cheng, J.4
-
11
-
-
84874545393
-
DNdisorder: predicting protein disorder using boosting and deep networks
-
Eickholt J, Cheng J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC bioinformatics. 2013;14(1):88.
-
(2013)
BMC bioinformatics
, vol.14
, Issue.1
, pp. 88
-
-
Eickholt, J.1
Cheng, J.2
-
12
-
-
84870415234
-
Predicting protein residue-residue contacts using deep networks and boosting
-
Eickholt J, Cheng J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics. 2012;28(23):3066-72.
-
(2012)
Bioinformatics
, vol.28
, Issue.23
, pp. 3066-3072
-
-
Eickholt, J.1
Cheng, J.2
-
13
-
-
84934966065
-
Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
-
Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, Sattar A, Yang Y, Zhou Y. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Sci Rep. 2015;5.
-
(2015)
Sci Rep
, vol.5
-
-
Heffernan, R.1
Paliwal, K.2
Lyons, J.3
Dehzangi, A.4
Sharma, A.5
Wang, J.6
Sattar, A.7
Yang, Y.8
Zhou, Y.9
-
14
-
-
85026373829
-
Capturing Non-Local Interactions by Long Short Term Memory Bidirectional Recurrent Neural Networks for Improving Prediction of Protein Secondary Structure, Backbone Angles, Contact Numbers, and Solvent Accessibility
-
Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing Non-Local Interactions by Long Short Term Memory Bidirectional Recurrent Neural Networks for Improving Prediction of Protein Secondary Structure, Backbone Angles, Contact Numbers, and Solvent Accessibility. Bioinformatics 2017:btx218.
-
(2017)
Bioinformatics
-
-
Heffernan, R.1
Yang, Y.2
Paliwal, K.3
Zhou, Y.4
-
15
-
-
0033954256
-
The protein data bank
-
Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov I, Bourne P. The protein data bank. Nucleic Acids Res. 2000;28:235-42.
-
(2000)
Nucleic Acids Res.
, vol.28
, pp. 235-242
-
-
Berman, H.1
Westbrook, J.2
Feng, Z.3
Gilliland, G.4
Bhat, T.5
Weissig, H.6
Shindyalov, I.7
Bourne, P.8
-
16
-
-
0035789525
-
Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
-
Meiler J, Müller M, Zeidler A, Schmäschke F. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. Mol Model Annu. 2001;7(9):360-9.
-
(2001)
Mol Model Annu
, vol.7
, Issue.9
, pp. 360-369
-
-
Meiler, J.1
Müller, M.2
Zeidler, A.3
Schmäschke, F.4
-
17
-
-
80053030893
-
Protein 8-class secondary structure prediction using conditional neural fields
-
Wang Z, Zhao F, Peng J, Xu J. Protein 8-class secondary structure prediction using conditional neural fields. Proteomics. 2011;11(19):3786-92.
-
(2011)
Proteomics
, vol.11
, Issue.19
, pp. 3786-3792
-
-
Wang, Z.1
Zhao, F.2
Peng, J.3
Xu, J.4
-
18
-
-
0030801002
-
Gapped BLAST and PSIBLAST: A new generation of protein database search programs
-
Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D. Gapped BLAST and PSIBLAST: A new generation of protein database search programs. Nucleic Acids. 1997;25:3389-402.
-
(1997)
Nucleic Acids.
, vol.25
, pp. 3389-3402
-
-
Altschul, S.1
Madden, T.2
Schaffer, A.3
Zhang, J.4
Zhang, Z.5
Miller, W.6
Lipman, D.7
-
19
-
-
84862184719
-
Sann: solvent accessibility prediction of proteins by nearest neighbor method
-
Joo K, Lee SJ, Lee J. Sann: solvent accessibility prediction of proteins by nearest neighbor method. Proteins: Struct Funct Bioinformatics. 2012;80(7):1791-7.
-
(2012)
Proteins: Struct Funct Bioinformatics
, vol.80
, Issue.7
, pp. 1791-1797
-
-
Joo, K.1
Lee, S.J.2
Lee, J.3
-
20
-
-
84907487648
-
SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity
-
Magnan CN, Baldi P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics. 2014;30(18):2592-7.
-
(2014)
Bioinformatics
, vol.30
, Issue.18
, pp. 2592-2597
-
-
Magnan, C.N.1
Baldi, P.2
-
21
-
-
75149164436
-
PreDisorder: ab initio sequence-based prediction of protein disordered regions
-
Deng X, Eickholt J, Cheng J. PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinforma. 2009;10
-
(2009)
BMC Bioinforma
, vol.10
-
-
Deng, X.1
Eickholt, J.2
Cheng, J.3
-
22
-
-
41349104644
-
Statistical properties of contact vectors
-
Kabakçioğlu A, Kanter I, Vendruscolo M, Domany E. Statistical properties of contact vectors. Phys Rev E. 2002;65(4):041904.
-
(2002)
Phys Rev E
, vol.65
, Issue.4
, pp. 041904
-
-
Kabakçioğlu, A.1
Kanter, I.2
Vendruscolo, M.3
Domany, E.4
-
23
-
-
10844226577
-
Predicting absolute contact numbers of native protein structure from amino acid sequence
-
Kinjo AR, Horimoto K, Nishikawa K. Predicting absolute contact numbers of native protein structure from amino acid sequence. Proteins: Struct Funct Bioinformatics. 2005;58(1):158-65.
-
(2005)
Proteins: Struct Funct Bioinformatics
, vol.58
, Issue.1
, pp. 158-165
-
-
Kinjo, A.R.1
Horimoto, K.2
Nishikawa, K.3
-
24
-
-
13444304144
-
Inverse kinematics in biology: the protein loop closure problem
-
Kolodny R, Guibas L, Levitt M, Koehl P. Inverse kinematics in biology: the protein loop closure problem. Int J Robot Res. 2005;24(2-3):151-63.
-
(2005)
Int J Robot Res
, vol.24
, Issue.2-3
, pp. 151-163
-
-
Kolodny, R.1
Guibas, L.2
Levitt, M.3
Koehl, P.4
-
25
-
-
55549086519
-
Fragment-HMM: a new approach to protein structure prediction
-
Li SC, Bu D, Xu J, Li M. Fragment-HMM: a new approach to protein structure prediction. Protein Sci. 2008;17(11):1925-34.
-
(2008)
Protein Sci
, vol.17
, Issue.11
, pp. 1925-1934
-
-
Li, S.C.1
Bu, D.2
Xu, J.3
Li, M.4
-
26
-
-
80052020052
-
Generalized fragment picking in Rosetta: design, protocols and applications
-
Gront D, Kulp DW, Vernon RM, Strauss CE, Baker D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS One. 2011;6(8):e23294.
-
(2011)
PLoS One
, vol.6
, Issue.8
-
-
Gront, D.1
Kulp, D.W.2
Vernon, R.M.3
Strauss, C.E.4
Baker, D.5
-
27
-
-
85007170449
-
FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling
-
Bhattacharya D, Adhikari B, Li J, Cheng J: FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling. Bioinformatics 2016:btw067.
-
(2016)
Bioinformatics
-
-
Bhattacharya, D.1
Adhikari, B.2
Li, J.3
Cheng, J.4
-
28
-
-
0020997912
-
Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
-
Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22
-
(1983)
Biopolymers
, vol.22
-
-
Kabsch, W.1
Sander, C.2
-
30
-
-
84860507958
-
Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms
-
Cheng J, Baldi P. Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms. Bioinformatics. 2005;21(suppl 1):i75-84.
-
(2005)
Bioinformatics
, vol.21
, pp. i75-i84
-
-
Cheng, J.1
Baldi, P.2
-
31
-
-
61449123967
-
Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network
-
Faraggi E, Xue B, Zhou Y. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins: Struct Funct Bioinformatics. 2009;74(4):847-56.
-
(2009)
Proteins: Struct Funct Bioinformatics
, vol.74
, Issue.4
, pp. 847-856
-
-
Faraggi, E.1
Xue, B.2
Zhou, Y.3
-
32
-
-
0036568279
-
Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
-
Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Struct Funct Bioinformatics. 2002;47(2):228-35.
-
(2002)
Proteins: Struct Funct Bioinformatics
, vol.47
, Issue.2
, pp. 228-235
-
-
Pollastri, G.1
Przybylski, D.2
Rost, B.3
Baldi, P.4
-
33
-
-
67849110005
-
NNcon: improved protein contact map prediction using 2D-recursive neural networks
-
Tegge AN. NNcon: improved protein contact map prediction using 2D-recursive neural networks. Nucleic Acids Res. 2009;37
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Tegge, A.N.1
-
35
-
-
84921817164
-
Learning representations by back-propagating errors
-
Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cogn Model. 1988;5(3):1.
-
(1988)
Cogn Model
, vol.5
, Issue.3
, pp. 1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
36
-
-
84937759137
-
Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods
-
Poole B. Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods. 2014.
-
(2014)
-
-
Poole, B.1
-
37
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Aistats. 2010. p. 249-56.
-
(2010)
Aistats
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
39
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527-54.
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
40
-
-
84885023116
-
Training restricted Boltzmann machines: an introduction
-
Fischer A, Igel C. Training restricted Boltzmann machines: an introduction. Pattern Recogn. 2014;47(1):25-39.
-
(2014)
Pattern Recogn
, vol.47
, Issue.1
, pp. 25-39
-
-
Fischer, A.1
Igel, C.2
-
42
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002;14(8):1771-800.
-
(2002)
Neural Comput
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
43
-
-
0033369033
-
Exploiting the past and the future in protein secondary structure prediction
-
Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics. 1999;15(11):937-46.
-
(1999)
Bioinformatics
, vol.15
, Issue.11
, pp. 937-946
-
-
Baldi, P.1
Brunak, S.2
Frasconi, P.3
Soda, G.4
Pollastri, G.5
-
44
-
-
0025503558
-
Backpropagation through time: what it does and how to do it
-
Werbos PJ. Backpropagation through time: what it does and how to do it. Proc IEEE. 1990;78(10):1550-60.
-
(1990)
Proc IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
-
45
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw. 1994;5(2):157-66.
-
(1994)
IEEE Trans Neural Netw
, vol.5
, Issue.2
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
|