메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

Deep learning methods for protein torsion angle prediction

Author keywords

Deep learning; Deep recurrent neural network; Protein torsion angle prediction; Restricted Boltzmann machine

Indexed keywords

DEEP NEURAL NETWORKS; DIHEDRAL ANGLE; ERRORS; FORECASTING; LEARNING SYSTEMS; NETWORK ARCHITECTURE; PROTEINS; RECURRENT NEURAL NETWORKS; TORSIONAL STRESS;

EID: 85029659778     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-017-1834-2     Document Type: Article
Times cited : (53)

References (46)
  • 1
    • 17844373552 scopus 로고    scopus 로고
    • Protein secondary structure prediction with dihedral angles
    • Wood MJ, Hirst JD. Protein secondary structure prediction with dihedral angles. PROTEINS: Struct Funct Bioinformatics. 2005;59(3):476-81.
    • (2005) PROTEINS: Struct Funct Bioinformatics , vol.59 , Issue.3 , pp. 476-481
    • Wood, M.J.1    Hirst, J.D.2
  • 3
    • 54849412811 scopus 로고    scopus 로고
    • ANGLOR: a composite machine-learning algorithm for protein backbone torsion angle prediction
    • Wu S, Zhang Y. ANGLOR: a composite machine-learning algorithm for protein backbone torsion angle prediction. PLoS One. 2008;3(10):e3400.
    • (2008) PLoS One , vol.3 , Issue.10
    • Wu, S.1    Zhang, Y.2
  • 4
    • 61449123967 scopus 로고    scopus 로고
    • Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network
    • Faraggi E, Xue B, Zhou Y. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins: Struct Funct Bioinformatics. 2009;74
    • (2009) Proteins: Struct Funct Bioinformatics , vol.74
    • Faraggi, E.1    Xue, B.2    Zhou, Y.3
  • 5
    • 84863073485 scopus 로고    scopus 로고
    • TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences
    • Song J, Tan H, Wang M, Webb GI, Akutsu T. TANGLE: two-level support vector regression approach for protein backbone torsion angle prediction from primary sequences. PLoS One. 2012;7(2):e30361.
    • (2012) PLoS One , vol.7 , Issue.2
    • Song, J.1    Tan, H.2    Wang, M.3    Webb, G.I.4    Akutsu, T.5
  • 6
    • 83855162773 scopus 로고    scopus 로고
    • SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
    • Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y. SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem. 2012;33(3):259-67.
    • (2012) J Comput Chem , vol.33 , Issue.3 , pp. 259-267
    • Faraggi, E.1    Zhang, T.2    Yang, Y.3    Kurgan, L.4    Zhou, Y.5
  • 7
    • 70350738241 scopus 로고    scopus 로고
    • Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
    • Faraggi E, Yang Y, Zhang S, Zhou Y. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. Structure. 2009;17(11):1515-27.
    • (2009) Structure , vol.17 , Issue.11 , pp. 1515-1527
    • Faraggi, E.1    Yang, Y.2    Zhang, S.3    Zhou, Y.4
  • 8
    • 84963976648 scopus 로고    scopus 로고
    • Evaluation of protein dihedral angle prediction methods
    • Singh H, Singh S, Raghava GP. Evaluation of protein dihedral angle prediction methods. PLoS One. 2014;9(8):e105667.
    • (2014) PLoS One , vol.9 , Issue.8
    • Singh, H.1    Singh, S.2    Raghava, G.P.3
  • 9
    • 84949267267 scopus 로고    scopus 로고
    • Improving protein fold recognition by deep learning networks
    • Jo T, Hou J, Eickholt J, Cheng J. Improving protein fold recognition by deep learning networks. Sci Rep. 2015;5
    • (2015) Sci Rep , vol.5
    • Jo, T.1    Hou, J.2    Eickholt, J.3    Cheng, J.4
  • 11
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: predicting protein disorder using boosting and deep networks
    • Eickholt J, Cheng J. DNdisorder: predicting protein disorder using boosting and deep networks. BMC bioinformatics. 2013;14(1):88.
    • (2013) BMC bioinformatics , vol.14 , Issue.1 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 12
    • 84870415234 scopus 로고    scopus 로고
    • Predicting protein residue-residue contacts using deep networks and boosting
    • Eickholt J, Cheng J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics. 2012;28(23):3066-72.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3066-3072
    • Eickholt, J.1    Cheng, J.2
  • 13
    • 84934966065 scopus 로고    scopus 로고
    • Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
    • Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, Sattar A, Yang Y, Zhou Y. Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Sci Rep. 2015;5.
    • (2015) Sci Rep , vol.5
    • Heffernan, R.1    Paliwal, K.2    Lyons, J.3    Dehzangi, A.4    Sharma, A.5    Wang, J.6    Sattar, A.7    Yang, Y.8    Zhou, Y.9
  • 14
    • 85026373829 scopus 로고    scopus 로고
    • Capturing Non-Local Interactions by Long Short Term Memory Bidirectional Recurrent Neural Networks for Improving Prediction of Protein Secondary Structure, Backbone Angles, Contact Numbers, and Solvent Accessibility
    • Heffernan R, Yang Y, Paliwal K, Zhou Y. Capturing Non-Local Interactions by Long Short Term Memory Bidirectional Recurrent Neural Networks for Improving Prediction of Protein Secondary Structure, Backbone Angles, Contact Numbers, and Solvent Accessibility. Bioinformatics 2017:btx218.
    • (2017) Bioinformatics
    • Heffernan, R.1    Yang, Y.2    Paliwal, K.3    Zhou, Y.4
  • 16
    • 0035789525 scopus 로고    scopus 로고
    • Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
    • Meiler J, Müller M, Zeidler A, Schmäschke F. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. Mol Model Annu. 2001;7(9):360-9.
    • (2001) Mol Model Annu , vol.7 , Issue.9 , pp. 360-369
    • Meiler, J.1    Müller, M.2    Zeidler, A.3    Schmäschke, F.4
  • 17
    • 80053030893 scopus 로고    scopus 로고
    • Protein 8-class secondary structure prediction using conditional neural fields
    • Wang Z, Zhao F, Peng J, Xu J. Protein 8-class secondary structure prediction using conditional neural fields. Proteomics. 2011;11(19):3786-92.
    • (2011) Proteomics , vol.11 , Issue.19 , pp. 3786-3792
    • Wang, Z.1    Zhao, F.2    Peng, J.3    Xu, J.4
  • 19
    • 84862184719 scopus 로고    scopus 로고
    • Sann: solvent accessibility prediction of proteins by nearest neighbor method
    • Joo K, Lee SJ, Lee J. Sann: solvent accessibility prediction of proteins by nearest neighbor method. Proteins: Struct Funct Bioinformatics. 2012;80(7):1791-7.
    • (2012) Proteins: Struct Funct Bioinformatics , vol.80 , Issue.7 , pp. 1791-1797
    • Joo, K.1    Lee, S.J.2    Lee, J.3
  • 20
    • 84907487648 scopus 로고    scopus 로고
    • SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity
    • Magnan CN, Baldi P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics. 2014;30(18):2592-7.
    • (2014) Bioinformatics , vol.30 , Issue.18 , pp. 2592-2597
    • Magnan, C.N.1    Baldi, P.2
  • 21
    • 75149164436 scopus 로고    scopus 로고
    • PreDisorder: ab initio sequence-based prediction of protein disordered regions
    • Deng X, Eickholt J, Cheng J. PreDisorder: ab initio sequence-based prediction of protein disordered regions. BMC Bioinforma. 2009;10
    • (2009) BMC Bioinforma , vol.10
    • Deng, X.1    Eickholt, J.2    Cheng, J.3
  • 23
    • 10844226577 scopus 로고    scopus 로고
    • Predicting absolute contact numbers of native protein structure from amino acid sequence
    • Kinjo AR, Horimoto K, Nishikawa K. Predicting absolute contact numbers of native protein structure from amino acid sequence. Proteins: Struct Funct Bioinformatics. 2005;58(1):158-65.
    • (2005) Proteins: Struct Funct Bioinformatics , vol.58 , Issue.1 , pp. 158-165
    • Kinjo, A.R.1    Horimoto, K.2    Nishikawa, K.3
  • 24
    • 13444304144 scopus 로고    scopus 로고
    • Inverse kinematics in biology: the protein loop closure problem
    • Kolodny R, Guibas L, Levitt M, Koehl P. Inverse kinematics in biology: the protein loop closure problem. Int J Robot Res. 2005;24(2-3):151-63.
    • (2005) Int J Robot Res , vol.24 , Issue.2-3 , pp. 151-163
    • Kolodny, R.1    Guibas, L.2    Levitt, M.3    Koehl, P.4
  • 25
    • 55549086519 scopus 로고    scopus 로고
    • Fragment-HMM: a new approach to protein structure prediction
    • Li SC, Bu D, Xu J, Li M. Fragment-HMM: a new approach to protein structure prediction. Protein Sci. 2008;17(11):1925-34.
    • (2008) Protein Sci , vol.17 , Issue.11 , pp. 1925-1934
    • Li, S.C.1    Bu, D.2    Xu, J.3    Li, M.4
  • 26
    • 80052020052 scopus 로고    scopus 로고
    • Generalized fragment picking in Rosetta: design, protocols and applications
    • Gront D, Kulp DW, Vernon RM, Strauss CE, Baker D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS One. 2011;6(8):e23294.
    • (2011) PLoS One , vol.6 , Issue.8
    • Gront, D.1    Kulp, D.W.2    Vernon, R.M.3    Strauss, C.E.4    Baker, D.5
  • 27
    • 85007170449 scopus 로고    scopus 로고
    • FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling
    • Bhattacharya D, Adhikari B, Li J, Cheng J: FRAGSION: ultra-fast protein fragment library generation by IOHMM sampling. Bioinformatics 2016:btw067.
    • (2016) Bioinformatics
    • Bhattacharya, D.1    Adhikari, B.2    Li, J.3    Cheng, J.4
  • 28
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22
    • (1983) Biopolymers , vol.22
    • Kabsch, W.1    Sander, C.2
  • 30
    • 84860507958 scopus 로고    scopus 로고
    • Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms
    • Cheng J, Baldi P. Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms. Bioinformatics. 2005;21(suppl 1):i75-84.
    • (2005) Bioinformatics , vol.21 , pp. i75-i84
    • Cheng, J.1    Baldi, P.2
  • 31
    • 61449123967 scopus 로고    scopus 로고
    • Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network
    • Faraggi E, Xue B, Zhou Y. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins: Struct Funct Bioinformatics. 2009;74(4):847-56.
    • (2009) Proteins: Struct Funct Bioinformatics , vol.74 , Issue.4 , pp. 847-856
    • Faraggi, E.1    Xue, B.2    Zhou, Y.3
  • 32
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Struct Funct Bioinformatics. 2002;47(2):228-35.
    • (2002) Proteins: Struct Funct Bioinformatics , vol.47 , Issue.2 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 33
    • 67849110005 scopus 로고    scopus 로고
    • NNcon: improved protein contact map prediction using 2D-recursive neural networks
    • Tegge AN. NNcon: improved protein contact map prediction using 2D-recursive neural networks. Nucleic Acids Res. 2009;37
    • (2009) Nucleic Acids Res , vol.37
    • Tegge, A.N.1
  • 35
    • 84921817164 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Cogn Model. 1988;5(3):1.
    • (1988) Cogn Model , vol.5 , Issue.3 , pp. 1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 36
    • 84937759137 scopus 로고    scopus 로고
    • Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods
    • Poole B. Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods. 2014.
    • (2014)
    • Poole, B.1
  • 37
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Aistats. 2010. p. 249-56.
    • (2010) Aistats , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 39
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527-54.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 40
    • 84885023116 scopus 로고    scopus 로고
    • Training restricted Boltzmann machines: an introduction
    • Fischer A, Igel C. Training restricted Boltzmann machines: an introduction. Pattern Recogn. 2014;47(1):25-39.
    • (2014) Pattern Recogn , vol.47 , Issue.1 , pp. 25-39
    • Fischer, A.1    Igel, C.2
  • 42
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002;14(8):1771-800.
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 43
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi P, Brunak S, Frasconi P, Soda G, Pollastri G. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics. 1999;15(11):937-46.
    • (1999) Bioinformatics , vol.15 , Issue.11 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 44
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos PJ. Backpropagation through time: what it does and how to do it. Proc IEEE. 1990;78(10):1550-60.
    • (1990) Proc IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 45
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw. 1994;5(2):157-66.
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.