-
2
-
-
4043052866
-
Accurate prediction of solvent accessibility using neural networks-based regression
-
Adamczak,R. et al. (2004) Accurate prediction of solvent accessibility using neural networks-based regression. Proteins, 56, 753-767.
-
(2004)
Proteins
, vol.56
, pp. 753-767
-
-
Adamczak, R.1
-
3
-
-
0037340834
-
Real value prediction of solvent accessibility from amino acid sequence
-
Ahmad,S. et al. (2003) Real value prediction of solvent accessibility from amino acid sequence. Proteins, 50, 629-635.
-
(2003)
Proteins
, vol.50
, pp. 629-635
-
-
Ahmad, S.1
-
4
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
-
Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25, 3389-3402.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
-
6
-
-
0033369033
-
Exploiting the past and the future in protein secondary structure prediction
-
Baldi,P. et al. (1999) Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 15, 937-946.
-
(1999)
Bioinformatics
, vol.15
, pp. 937-946
-
-
Baldi, P.1
-
7
-
-
84869761071
-
The protein-folding problem, 50 years on
-
Dill,K.A., and MacCallum,J.L. (2012) The protein-folding problem, 50 years on. Science, 338, 1042-1046.
-
(2012)
Science
, vol.338
, pp. 1042-1046
-
-
Dill, K.A.1
MacCallum, J.L.2
-
8
-
-
34249914807
-
Real-SPINE: An integrated system of neural networks for real-value prediction of protein structural properties
-
Dor,O., and Zhou,Y. (2007) Real-SPINE: an integrated system of neural networks for real-value prediction of protein structural properties. Protein, 68, 76-81.
-
(2007)
Protein
, vol.68
, pp. 76-81
-
-
Dor, O.1
Zhou, Y.2
-
9
-
-
84979854249
-
JPred4: A protein secondary structure prediction server
-
Drozdetskiy,A. et al. (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res., 43, W389-W394.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. W389-W394
-
-
Drozdetskiy, A.1
-
10
-
-
83855162773
-
SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
-
Faraggi,E. et al. (2012) SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J. Comput. Chem., 33, 259-267.
-
(2012)
J. Comput. Chem.
, vol.33
, pp. 259-267
-
-
Faraggi, E.1
-
11
-
-
0023731964
-
Amino acid side chain parameters for correlation studies in biology and pharmacology
-
Fauchère,J.L. et al. (1988) Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Protein Res., 32, 269-278.
-
(1988)
Int. J. Pept. Protein Res.
, vol.32
, pp. 269-278
-
-
Fauchère, J.L.1
-
12
-
-
26444473604
-
Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
-
Garg,A. et al. (2005) Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins, 61, 318-324.
-
(2005)
Proteins
, vol.61
, pp. 318-324
-
-
Garg, A.1
-
13
-
-
0014116254
-
Minimization of polypeptide energy i. Preliminary structures of bovine pancreatic ribonuclease s-peptide
-
Gibson,K.D., and Scheraga,H.A. (1967) Minimization of polypeptide energy. i. preliminary structures of bovine pancreatic ribonuclease s-peptide. Proc. Natl. Acad. Sci. USA, 58, 420-427.
-
(1967)
Proc. Natl. Acad. Sci. USA
, vol.58
, pp. 420-427
-
-
Gibson, K.D.1
Scheraga, H.A.2
-
14
-
-
0030777760
-
Predicting protein stability changes upon mutation using database-derived potentials: Solvent accessibility determines the importance of local versus non-local interactions along the sequence
-
Gilis,D., and Rooman,M. (1997) Predicting protein stability changes upon mutation using database-derived potentials: solvent accessibility determines the importance of local versus non-local interactions along the sequence. J. Mol. Biol., 272, 276-290.
-
(1997)
J. Mol. Biol.
, vol.272
, pp. 276-290
-
-
Gilis, D.1
Rooman, M.2
-
15
-
-
71249112130
-
Offline handwriting recognition with multidimensional recurrent neural networks
-
In: Koller D., Schuurmans D., Bengio Y., and Bottou L., editors, Curran Associates, Inc., Red Hook, NY
-
Graves,A., and Schmidhuber,J. (2009) Offline handwriting recognition with multidimensional recurrent neural networks. In: Koller D., Schuurmans D., Bengio Y., and Bottou L., editors, Advances in Neural Information Processing Systems 21. Curran Associates, Inc., Red Hook, NY, p.545-552.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 545-552
-
-
Graves, A.1
Schmidhuber, J.2
-
16
-
-
14644400399
-
An amino acid has two sides: A new 2D measure provides a different view of solvent exposure
-
Hamelryck,T. (2005) An amino acid has two sides: a new 2D measure provides a different view of solvent exposure. Proteins, 59, 38-48.
-
(2005)
Proteins
, vol.59
, pp. 38-48
-
-
Hamelryck, T.1
-
17
-
-
85017102714
-
Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks
-
Hanson,J. et al. (2017) Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks. Bioinformatics, 33, 685-692.
-
(2017)
Bioinformatics
, vol.33
, pp. 685-692
-
-
Hanson, J.1
-
18
-
-
84934966065
-
Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
-
Heffernan,R. et al. (2015) Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Sci. Rep., 5, 11476.
-
(2015)
Sci. Rep.
, vol.5
, pp. 11476
-
-
Heffernan, R.1
-
19
-
-
84962199140
-
Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins
-
Heffernan, R. et al. (2016) Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins. Bioinformatics, 32, 843-849.
-
(2016)
Bioinformatics
, vol.32
, pp. 843-849
-
-
Heffernan, R.1
-
21
-
-
0025039476
-
Predicting surface exposure of amino acids from protein sequence
-
Holbrook,S.R. et al. (1990) Predicting surface exposure of amino acids from protein sequence. Protein Eng., 3, 659-665.
-
(1990)
Protein Eng.
, vol.3
, pp. 659-665
-
-
Holbrook, S.R.1
-
22
-
-
0033578684
-
Protein secondary structure prediction based on positionspecific scoring matrices
-
Jones,D.T. (1999) Protein secondary structure prediction based on positionspecific scoring matrices. J. Mol. Biol., 292, 195-202.
-
(1999)
J. Mol. Biol.
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
23
-
-
0020997912
-
Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
-
Kabsch,W., and Sander,C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577-2637.
-
(1983)
Biopolymers
, vol.22
, pp. 2577-2637
-
-
Kabsch, W.1
Sander, C.2
-
24
-
-
0027407722
-
Estimation and use of protein backbone angle probabilities
-
Kang,H.S. et al. (1993) Estimation and use of protein backbone angle probabilities. J Mol. Biol., 229, 448-460.
-
(1993)
J Mol. Biol.
, vol.229
, pp. 448-460
-
-
Kang, H.S.1
-
26
-
-
33749357045
-
CRNPRED: Highly accurate prediction of one-dimensional protein structures by large-scale critical random networks
-
Kinjo,A.R., and Nishikawa,K. (2006) CRNPRED: highly accurate prediction of one-dimensional protein structures by large-scale critical random networks. BMC Bioinformatics, 7, 401.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 401
-
-
Kinjo, A.R.1
Nishikawa, K.2
-
27
-
-
3543101355
-
Protein backbone angle prediction with machine learning approaches
-
Kuang,R. et al. (2004) Protein backbone angle prediction with machine learning approaches. Bioinformatics, 20, 1612-1621.
-
(2004)
Bioinformatics
, vol.20
, pp. 1612-1621
-
-
Kuang, R.1
-
28
-
-
35148893484
-
A tutorial on energy-based learning
-
In: Bakir, G., Hofman, T., Schölkopf, B., Smola, A., Taskar, B. (eds.) MIT Press, Cambridge
-
LeCun,Y. et al. (2006) A tutorial on energy-based learning. In: Bakir, G., Hofman, T., Schölkopf, B., Smola, A., Taskar, B. (eds.) Predicting Structured Data. MIT Press, Cambridge.
-
(2006)
Predicting Structured Data
-
-
LeCun, Y.1
-
29
-
-
0015222647
-
The interpretation of protein structures: Estimation of static accessibility
-
Lee,B., and Richards,F.M. (1971) The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol., 55, 379-400.
-
(1971)
J. Mol. Biol.
, vol.55
, pp. 379-400
-
-
Lee, B.1
Richards, F.M.2
-
30
-
-
84927770389
-
Predicting backbone ca angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
-
Lyons,J. et al. (2014) Predicting backbone ca angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network. J. Comput. Chem., 35, 2040-2046.
-
(2014)
J. Comput. Chem.
, vol.35
, pp. 2040-2046
-
-
Lyons, J.1
-
31
-
-
84907487648
-
SSpro/ACCpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity
-
Magnan,C.N., and Baldi,P. (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics, 30, 2592-2597.
-
(2014)
Bioinformatics
, vol.30
, pp. 2592-2597
-
-
Magnan, C.N.1
Baldi, P.2
-
32
-
-
84880998440
-
Porter, PaleAle 4.0: High-accuracy prediction of protein secondary structure and relative solvent accessibility
-
Mirabello,C., and Pollastri,G. (2013) Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure and relative solvent accessibility. Bioinformatics, 29, 2056-2058.
-
(2013)
Bioinformatics
, vol.29
, pp. 2056-2058
-
-
Mirabello, C.1
Pollastri, G.2
-
33
-
-
76549252207
-
The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain
-
Pauling,L. et al. (1951) The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA, 37, 205-211.
-
(1951)
Proc. Natl. Acad. Sci. USA
, vol.37
, pp. 205-211
-
-
Pauling, L.1
-
34
-
-
0036568279
-
Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
-
Pollastri,G. et al. (2002a) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins, 47, 228-235.
-
(2002)
Proteins
, vol.47
, pp. 228-235
-
-
Pollastri, G.1
-
35
-
-
0036568293
-
Prediction of coordination number and relative solvent accessibility in proteins
-
Pollastri,G. et al. (2002b) Prediction of coordination number and relative solvent accessibility in proteins. Proteins, 47, 142-153.
-
(2002)
Proteins
, vol.47
, pp. 142-153
-
-
Pollastri, G.1
-
36
-
-
84856489442
-
HHblits: Lightning-fast iterative protein sequence searching by HMM-HMMalignment
-
Remmert,M. et al. (2012) HHblits: lightning-fast iterative protein sequence searching by HMM-HMMalignment. Nat. Methods, 9, 173-175.
-
(2012)
Nat. Methods
, vol.9
, pp. 173-175
-
-
Remmert, M.1
-
37
-
-
0000939821
-
What is the probability of a chance prediction of a protein structure with an rmsd of 6A
-
Reva,B.A. et al. (1998) What is the probability of a chance prediction of a protein structure with an rmsd of 6A. Fold Des., 3, 141-147.
-
(1998)
Fold Des.
, vol.3
, pp. 141-147
-
-
Reva, B.A.1
-
38
-
-
0035782925
-
Review: Protein secondary structure prediction continues to rise
-
Rost,B. (2001) Review: protein secondary structure prediction continues to rise. J. Struct. Biol., 134, 204-218.
-
(2001)
J. Struct. Biol.
, vol.134
, pp. 204-218
-
-
Rost, B.1
-
39
-
-
0028109886
-
Conservation and prediction of solvent accessibility in protein families
-
Rost,B., and Sander,C. (1994) Conservation and prediction of solvent accessibility in protein families. Proteins, 20, 216-226.
-
(1994)
Proteins
, vol.20
, pp. 216-226
-
-
Rost, B.1
Sander, C.2
-
41
-
-
46249133956
-
HSEpred: Predict half-sphere exposure from protein sequences
-
Song,J. et al. (2008) HSEpred: predict half-sphere exposure from protein sequences. Bioinformatics, 24, 1489-1497.
-
(2008)
Bioinformatics
, vol.24
, pp. 1489-1497
-
-
Song, J.1
-
42
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15, 1929-1958.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
-
43
-
-
84878402147
-
LSTM neural networks for language modeling
-
Sundermeyer,M. et al. (2012) LSTM neural networks for language modeling. In: Proceedings Interspeech. p.194-197.
-
(2012)
Proceedings Interspeech
, pp. 194-197
-
-
Sundermeyer, M.1
-
44
-
-
66349094681
-
Identification of computational hot spots in protein interfaces: Combining solvent accessibility and inter-residue potentials improves the accuracy
-
Tuncbag,N. et al. (2009) Identification of computational hot spots in protein interfaces: combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics, 25, 1513-1520.
-
(2009)
Bioinformatics
, vol.25
, pp. 1513-1520
-
-
Tuncbag, N.1
-
45
-
-
84954113329
-
Protein secondary structure prediction using deep convolutional neural fields
-
Wang,S. et al. (2016) Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep., 6, 18962.
-
(2016)
Sci. Rep.
, vol.6
, pp. 18962
-
-
Wang, S.1
-
46
-
-
17844373552
-
Protein secondary structure prediction with dihedral angles
-
Wood,M.J., and Hirst,J.D. (2005) Protein secondary structure prediction with dihedral angles. Proteins, 59, 476-481.
-
(2005)
Proteins
, vol.59
, pp. 476-481
-
-
Wood, M.J.1
Hirst, J.D.2
-
48
-
-
44949201613
-
Real-value prediction of backbone torsion angles
-
Xue,B. et al. (2008) Real-value prediction of backbone torsion angles. Proteins, 72, 427-433.
-
(2008)
Proteins
, vol.72
, pp. 427-433
-
-
Xue, B.1
-
49
-
-
85041440357
-
Sixty-five years of long March in protein secondary structure prediction: The final stretch?
-
Yang,Y. et al. (2016) Sixty-five years of long march in protein secondary structure prediction: the final stretch? Brief. Bioinform., DOI: 10.1093/bib/bbw129.
-
(2016)
Brief. Bioinform
-
-
Yang, Y.1
-
50
-
-
84896921968
-
Context-based features enhance protein secondary structure prediction accuracy
-
Yaseen,A., and Li,Y. (2014) Context-based features enhance protein secondary structure prediction accuracy. J. Chem. Inf. Model., 54, 992-1002.
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 992-1002
-
-
Yaseen, A.1
Li, Y.2
-
51
-
-
27644490770
-
Better prediction of protein contact number using a support vector regression analysis of amino acid sequence
-
Yuan,Z. (2005) Better prediction of protein contact number using a support vector regression analysis of amino acid sequence. BMC Bioinformatics, 6, 248.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 248
-
-
Yuan, Z.1
-
52
-
-
6344258643
-
Prediction of protein accessible surface areas by support vector regression
-
Yuan,Z., and Huang,B. (2004) Prediction of protein accessible surface areas by support vector regression. Proteins, 57, 558-564.
-
(2004)
Proteins
, vol.57
, pp. 558-564
-
-
Yuan, Z.1
Huang, B.2
-
53
-
-
84878372856
-
Prediction of one-dimensional structural properties of proteins by integrated neural networks
-
In: Rangwala, R. and Karypis, G. (ed.) Chap. 4, John Wiley & Sons, Inc., Hoboken, NJ
-
Zhou,Y., and Faraggi,E. (2010) Prediction of one-dimensional structural properties of proteins by integrated neural networks. In: Rangwala, R. and Karypis, G. (ed.) Introduction to Protein Structure Prediction, Chap. 4, John Wiley & Sons, Inc., Hoboken, NJ. p.45-74.
-
(2010)
Introduction to Protein Structure Prediction
, pp. 45-74
-
-
Zhou, Y.1
Faraggi, E.2
-
54
-
-
79251601609
-
Trends in template/fragment-free protein structure prediction
-
Zhou,Y. et al. (2011) Trends in template/fragment-free protein structure prediction. Theor. Chem. Acc., 128, 3-16.
-
(2011)
Theor. Chem. Acc.
, vol.128
, pp. 3-16
-
-
Zhou, Y.1
|