-
1
-
-
4644244389
-
Visual attention: Bottom-up versus top-down
-
C. E. Connor, H. E. Egeth, and S. Yantis, "Visual attention: Bottom-up versus top-down, " Current Biol., vol. 14, no. 19, pp. R850-R852, 2004.
-
(2004)
Current Biol.
, vol.14
, Issue.19
, pp. R850-R852
-
-
Connor, C.E.1
Egeth, H.E.2
Yantis, S.3
-
2
-
-
77955637257
-
Computational visual attention systems and their cognitive foundations: A survey
-
S. Frintrop, E. Rome, and H. I. Christensen, "Computational visual attention systems and their cognitive foundations: A survey, " ACM Trans. Appl. Perception, vol. 7, no. 1, p. 6, 2010.
-
(2010)
ACM Trans. Appl. Perception
, vol.7
, Issue.1
, pp. 6
-
-
Frintrop, S.1
Rome, E.2
Christensen, H.I.3
-
3
-
-
33645887250
-
Interactions between attention and working memory
-
E. Awh, E. K. Vogel, and S.-H. Oh, "Interactions between attention and working memory, " Neuroscience, vol. 139, no. 1, pp. 201-208, 2006.
-
(2006)
Neuroscience
, vol.139
, Issue.1
, pp. 201-208
-
-
Awh, E.1
Vogel, E.K.2
Oh, S.-H.3
-
4
-
-
0018878142
-
A feature-integration theory of attention
-
Jan.
-
A. M. Treisman and G. Gelade, "A feature-integration theory of attention, " Cognit. Psychol., vol. 12, no. 1, pp. 97-136, Jan. 1980.
-
(1980)
Cognit. Psychol.
, vol.12
, Issue.1
, pp. 97-136
-
-
Treisman, A.M.1
Gelade, G.2
-
5
-
-
0032204063
-
A model of saliency-based visual attention for rapid scene analysis
-
Nov.
-
L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254-1259, Nov. 1998.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.11
, pp. 1254-1259
-
-
Itti, L.1
Koch, C.2
Niebur, E.3
-
6
-
-
84888246981
-
Saliency-aware video compression
-
Jan.
-
H. Hadizadeh and I. V. Bajíc, "Saliency-aware video compression, " IEEE Trans. Image Process., vol. 23, no. 1, pp. 19-33, Jan. 2014.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.1
, pp. 19-33
-
-
Hadizadeh, H.1
Bajíc, I.V.2
-
7
-
-
79952819004
-
Attentional selection for object recognition-A gentle way
-
Berlin, Germany: Springer
-
D. Walther, L. Itti, M. Riesenhuber, T. Poggio, and C. Koch, "Attentional selection for object recognition-A gentle way, " in Biologically Motivated Computer Vision. Berlin, Germany: Springer, 2002, pp. 472-479.
-
(2002)
Biologically Motivated Computer Vision
, pp. 472-479
-
-
Walther, D.1
Itti, L.2
Riesenhuber, M.3
Poggio, T.4
Koch, C.5
-
8
-
-
70450192896
-
Dense saliency-based spatiotemporal feature points for action recognition
-
K. Rapantzikos, Y. Avrithis, and S. Kollias, "Dense saliency-based spatiotemporal feature points for action recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 1454-1461.
-
(2009)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 1454-1461
-
-
Rapantzikos, K.1
Avrithis, Y.2
Kollias, S.3
-
9
-
-
2942739263
-
A visual attention model for adapting images on small displays
-
Oct.
-
L.-Q. Chen, X. Xie, X. Fan, W.-Y. Ma, H.-J. Zhang, and H.-Q. Zhou, "A visual attention model for adapting images on small displays, " Multimedia Syst., vol. 9, no. 4, pp. 353-364, Oct. 2003.
-
(2003)
Multimedia Syst.
, vol.9
, Issue.4
, pp. 353-364
-
-
Chen, L.-Q.1
Xie, X.2
Fan, X.3
Ma, W.-Y.4
Zhang, H.-J.5
Zhou, H.-Q.6
-
10
-
-
79952814789
-
A spatiotemporal saliency model for video surveillance
-
T. Yubing, F. A. Cheikh, F. F. E. Guraya, H. Konik, and A. Trémeau, "A spatiotemporal saliency model for video surveillance, " Cognit. Comput., vol. 3, no. 1, pp. 241-263, 2011.
-
(2011)
Cognit. Comput.
, vol.3
, Issue.1
, pp. 241-263
-
-
Yubing, T.1
Cheikh, F.A.2
Guraya, F.F.E.3
Konik, H.4
Trémeau, A.5
-
11
-
-
78650903742
-
Saliency map
-
E. Niebur, "Saliency map, " Scholarpedia, vol. 2, no. 8, p. 2675, 2007.
-
(2007)
Scholarpedia
, vol.2
, Issue.8
, pp. 2675
-
-
Niebur, E.1
-
12
-
-
84864037603
-
Graph-based visual saliency
-
J. Harel, C. Koch, and P. Perona, "Graph-based visual saliency, " in Proc. Adv. Neural Inf. Process. Syst., 2006, pp. 545-552.
-
(2006)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 545-552
-
-
Harel, J.1
Koch, C.2
Perona, P.3
-
13
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov.
-
G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, " IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
14
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning, " in Proc. Int. Conf. Mach. Learn., 2008, pp. 160-167.
-
(2008)
Proc. Int. Conf. Mach. Learn.
, pp. 160-167
-
-
Collobert, R.1
Weston, J.2
-
15
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, " in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
L. Bottou, "Large-scale machine learning with stochastic gradient descent, " in Proc. COMPSTAT, 2010, pp. 177-186.
-
(2010)
Proc. COMPSTAT
, pp. 177-186
-
-
Bottou, L.1
-
17
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Apr.
-
O. Russakovsky et al., "ImageNet large scale visual recognition challenge, " Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Apr. 2015.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
18
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, "Learning deep features for scene recognition using places database, " in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 487-495.
-
(2014)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 487-495
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
-
21
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
22
-
-
84878629490
-
-
Dept. Comput. Sci. Artif. Intell. Lab, MIT, Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-2012-001 [Online]
-
T. Judd, F. Durand, and A. Torralba, "A benchmark of computational models of saliency to predict human fixations, " Dept. Comput. Sci. Artif. Intell. Lab, MIT, Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-2012-001, 2012. [Online]. Available: http://hdl.handle.net/1721.1/68590
-
(2012)
A Benchmark of Computational Models of Saliency to Predict Human Fixations
-
-
Judd, T.1
Durand, F.2
Torralba, A.3
-
24
-
-
84911400874
-
The secrets of salient object segmentation
-
Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, "The secrets of salient object segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 280-287.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 280-287
-
-
Li, Y.1
Hou, X.2
Koch, C.3
Rehg, J.M.4
Yuille, A.L.5
-
25
-
-
84893634313
-
Predicting human gaze beyond pixels
-
J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao, "Predicting human gaze beyond pixels, " J. Vis., vol. 14, no. 1, pp. 1-20, 2014.
-
(2014)
J. Vis.
, vol.14
, Issue.1
, pp. 1-20
-
-
Xu, J.1
Jiang, M.2
Wang, S.3
Kankanhalli, M.S.4
Zhao, Q.5
-
26
-
-
84946605063
-
Intrinsic and extrinsic effects on image memorability
-
Nov.
-
Z. Bylinskii, P. Isola, C. Bainbridge, A. Torralba, and A. Oliva, "Intrinsic and extrinsic effects on image memorability, " Vis. Res., vol. 116, pp. 165-178, Nov. 2015.
-
(2015)
Vis. Res.
, vol.116
, pp. 165-178
-
-
Bylinskii, Z.1
Isola, P.2
Bainbridge, C.3
Torralba, A.4
Oliva, A.5
-
27
-
-
84959225954
-
SALICON: Saliency in context
-
M. Jiang, S. Huang, J. Duan, and Q. Zhao, "SALICON: Saliency in context, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1072-1080.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 1072-1080
-
-
Jiang, M.1
Huang, S.2
Duan, J.3
Zhao, Q.4
-
28
-
-
0022388528
-
Shifts in selective visual attention: Towards the underlying neural circuitry
-
C. Koch and S. Ullman, "Shifts in selective visual attention: Towards the underlying neural circuitry, " Human Neurobiol., vol. 4, no. 4, pp. 219-227, 1985.
-
(1985)
Human Neurobiol.
, vol.4
, Issue.4
, pp. 219-227
-
-
Koch, C.1
Ullman, S.2
-
29
-
-
85020604545
-
Image saliency by isocentric curvedness and color
-
R. Valenti, N. Sebe, and T. Gevers, "Image saliency by isocentric curvedness and color, " in Proc. Int. Conf. Comput. Vis., 2009, pp. 2185-2192.
-
(2009)
Proc. Int. Conf. Comput. Vis.
, pp. 2185-2192
-
-
Valenti, R.1
Sebe, N.2
Gevers, T.3
-
30
-
-
84874539078
-
Saliency detection using regional histograms
-
Z. Liu, O. Le Meur, S. Luo, and L. Shen, "Saliency detection using regional histograms, " Opt. Lett., vol. 38, no. 5, pp. 700-702, 2013.
-
(2013)
Opt. Lett.
, vol.38
, Issue.5
, pp. 700-702
-
-
Liu, Z.1
Le Meur, O.2
Luo, S.3
Shen, L.4
-
31
-
-
84867871481
-
Depth matters: Influence of depth cues on visual saliency
-
C. Lang, T. V. Nguyen, H. Katti, K. Yadati, M. Kankanhalli, and S. Yan, "Depth matters: Influence of depth cues on visual saliency, " in Proc. Eur. Conf. Comput. Vis., 2012, pp. 101-115.
-
(2012)
Proc. Eur. Conf. Comput. Vis.
, pp. 101-115
-
-
Lang, C.1
Nguyen, T.V.2
Katti, H.3
Yadati, K.4
Kankanhalli, M.5
Yan, S.6
-
32
-
-
84878384522
-
Visual saliency estimation by nonlinearly integrating features using region covariances
-
Mar.
-
E. Erdem and A. Erdem, "Visual saliency estimation by nonlinearly integrating features using region covariances, " J. Vis., vol. 13, no. 4, p. 11, Mar. 2013.
-
(2013)
J. Vis.
, vol.13
, Issue.4
, pp. 11
-
-
Erdem, E.1
Erdem, A.2
-
33
-
-
33845598510
-
Covariance tracking using model update based on lie algebra
-
F. Porikli, O. Tuzel, and P. Meer, "Covariance tracking using model update based on lie algebra, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2006, pp. 728-735.
-
(2006)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 728-735
-
-
Porikli, F.1
Tuzel, O.2
Meer, P.3
-
35
-
-
0142199137
-
Topdown control of visual attention in object detection
-
A. Oliva, A. Torralba, M. S. Castelhano, and J. M. Henderson, "Topdown control of visual attention in object detection, " in Proc. Int. Conf. Image Process., 2003, pp. I-253-I-256.
-
(2003)
Proc. Int. Conf. Image Process.
, pp. I253-I256
-
-
Oliva, A.1
Torralba, A.2
Castelhano, M.S.3
Henderson, J.M.4
-
37
-
-
84959190478
-
How many bits does it take for a stimulus to be salient?
-
S. H. Khatoonabadi, N. Vasconcelos, I. V. Bajíc, and Y. Shan, "How many bits does it take for a stimulus to be salient?" in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 5501-5510.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 5501-5510
-
-
Khatoonabadi, S.H.1
Vasconcelos, N.2
Bajíc, I.V.3
Shan, Y.4
-
39
-
-
84899945571
-
Learning to predict eye fixations for semantic contents using multi-layer sparse network
-
Aug.
-
C. Shen and Q. Zhao, "Learning to predict eye fixations for semantic contents using multi-layer sparse network, " Neurocomputing, vol. 138, pp. 61-68, Aug. 2014.
-
(2014)
Neurocomputing
, vol.138
, pp. 61-68
-
-
Shen, C.1
Zhao, Q.2
-
40
-
-
84911369162
-
Large-scale optimization of hierarchical features for saliency prediction in natural images
-
E. Vig, M. Dorr, and D. Cox, "Large-scale optimization of hierarchical features for saliency prediction in natural images, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 2798-2805.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 2798-2805
-
-
Vig, E.1
Dorr, M.2
Cox, D.3
-
41
-
-
84946554818
-
Predicting eye fixations using convolutional neural networks
-
N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu, "Predicting eye fixations using convolutional neural networks, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 362-370.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 362-370
-
-
Liu, N.1
Han, J.2
Zhang, D.3
Wen, S.4
Liu, T.5
-
42
-
-
84908537903
-
CNN features off-the-shelf: An astounding baseline for recognition
-
A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition, " in Proc. Comput. Vis. Pattern Recognit. Workshops, 2014, pp. 512-519.
-
(2014)
Proc. Comput. Vis. Pattern Recognit. Workshops
, pp. 512-519
-
-
Razavian, A.S.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
-
43
-
-
84973923049
-
SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks
-
X. Huang, C. Shen, X. Boix, and Q. Zhao, "SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks, " in Proc. IEEE Int. Conf. Comput. Vis., Jun. 2015, pp. 262-270.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis., Jun.
, pp. 262-270
-
-
Huang, X.1
Shen, C.2
Boix, X.3
Zhao, Q.4
-
44
-
-
84959212183
-
Saliency detection by multi-context deep learning
-
R. Zhao, W. Ouyang, H. Li, and X. Wang, "Saliency detection by multi-context deep learning, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1265-1274.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 1265-1274
-
-
Zhao, R.1
Ouyang, W.2
Li, H.3
Wang, X.4
-
46
-
-
84973402617
-
Object saliency using a background prior
-
C. Sheth and R. V. Babu, "Object saliency using a background prior, " in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Mar. 2016, pp. 1931-1935.
-
(2016)
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., Mar.
, pp. 1931-1935
-
-
Sheth, C.1
Babu, R.V.2
-
47
-
-
84986243887
-
Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentation
-
S. S. S. Kruthiventi, V. Gudisa, J. H. Dholakiya, and R. V. Babu, "Saliency unified: A deep architecture for simultaneous eye fixation prediction and salient object segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2016, pp. 5781-5790.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.
, pp. 5781-5790
-
-
Kruthiventi, S.S.S.1
Gudisa, V.2
Dholakiya, J.H.3
Babu, R.V.4
-
48
-
-
85029213778
-
-
Deeplearning.net, accessed on Aug. 5, 2016. [Online]
-
Deeplearning.net, accessed on Aug. 5, 2016. [Online]. Available: http://deeplearning.net/tutorial/lenet.html#maxpooling
-
-
-
-
52
-
-
45749126005
-
Visual salience
-
L. Itti, "Visual salience, " Scholarpedia, vol. 2, no. 9, p. 3327, 2007.
-
(2007)
Scholarpedia
, vol.2
, Issue.9
, pp. 3327
-
-
Itti, L.1
-
53
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting, " J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
54
-
-
36448979181
-
The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions
-
B. W Tatler, "The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions, " J. Vis., vol. 7, no. 14, p. 4, 2007.
-
(2007)
J. Vis.
, vol.7
, Issue.14
, pp. 4
-
-
Tatler, B.W.1
-
55
-
-
67650302087
-
Quantifying center bias of observers in free viewing of dynamic natural scenes
-
P.-H. Tseng, R. Carmi, I. G M. Cameron, D. P. Munoz, and L. Itti, "Quantifying center bias of observers in free viewing of dynamic natural scenes, " J. Vis., vol. 9, no. 7, p. 4, 2009.
-
(2009)
J. Vis.
, vol.9
, Issue.7
, pp. 4
-
-
Tseng, P.-H.1
Carmi, R.2
Cameron, I.G.M.3
Munoz, D.P.4
Itti, L.5
-
56
-
-
78149312625
-
What is the chance of happening: A new way to predict where people look
-
Y Yang, M. Song, N. Li, J. Bu, and C. Chen, "What is the chance of happening: A new way to predict where people look, " in Proc. Eur. Conf. Comput. Vis., 2010, pp. 631-643.
-
(2010)
Proc. Eur. Conf. Comput. Vis.
, pp. 631-643
-
-
Yang, Y.1
Song, M.2
Li, N.3
Bu, J.4
Chen, C.5
-
57
-
-
77953205576
-
Learning to predict where humans look
-
T Judd, K. Ehinger, F. Durand, and A. Torralba, "Learning to predict where humans look, " in Proc. IEEE Int. Conf. Comput. Vis., Sep./Oct. 2009, pp. 2106-2113.
-
(2009)
Proc. IEEE Int. Conf. Comput. Vis., Sep./Oct.
, pp. 2106-2113
-
-
Judd, T.1
Ehinger, K.2
Durand, F.3
Torralba, A.4
-
59
-
-
84921759894
-
What is a salient object? A dataset and a baseline model for salient object detection
-
Feb.
-
A. Borji, "What is a salient object? A dataset and a baseline model for salient object detection, " IEEE Trans. Image Process., vol. 24, no. 2, pp. 742-756, Feb. 2015.
-
(2015)
IEEE Trans. Image Process.
, vol.24
, Issue.2
, pp. 742-756
-
-
Borji, A.1
-
60
-
-
84874351786
-
Methods for comparing scanpaths and saliency maps: Strengths and weaknesses
-
Mar.
-
O. Le Meur and T Baccino, "Methods for comparing scanpaths and saliency maps: Strengths and weaknesses, " Behavior Res. Methods, vol. 45, no. 1, pp. 251-266, Mar. 2013.
-
(2013)
Behavior Res. Methods
, vol.45
, Issue.1
, pp. 251-266
-
-
Le Meur, O.1
Baccino, T.2
-
61
-
-
84906493406
-
Microsoft COCO: Common objects in context
-
T.-Y Lin et al, "Microsoft COCO: Common objects in context, " in Proc. Eur. Conf. Comput. Vis., 2014, pp. 740-755.
-
(2014)
Proc. Eur. Conf. Comput. Vis.
, pp. 740-755
-
-
Lin, T.-Y.1
-
62
-
-
84921650810
-
-
accessed on Aug. 5, 2016. [Online]
-
Z. Bylinskii et al. MIT Saliency Benchmark, accessed on Aug. 5, 2016. [Online]. Available: http://saliency.mit.edu/
-
MIT Saliency Benchmark
-
-
Bylinskii, Z.1
-
63
-
-
84898774374
-
Saliency and human fixations: State-of-the-art and study of com-parison metrics
-
N. Riche, M. Duvinage, M. Mancas, B. Gosselin, and T. Dutoit, "Saliency and human fixations: State-of-the-art and study of com-parison metrics, " in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 1153-1160.
-
(2013)
Proc. IEEE Int. Conf. Comput. Vis., Dec.
, pp. 1153-1160
-
-
Riche, N.1
Duvinage, M.2
Mancas, M.3
Gosselin, B.4
Dutoit, T.5
-
64
-
-
50249088113
-
Applying computational tools to predict gaze direction in interactive visual environments
-
R. J. Peters and L. Itti, "Applying computational tools to predict gaze direction in interactive visual environments, " ACM Trans. Appl. Perception, vol. 5, no. 2, p. 9, 2008.
-
(2008)
ACM Trans. Appl. Perception
, vol.5
, Issue.2
, pp. 9
-
-
Peters, R.J.1
Itti, L.2
-
65
-
-
20544446875
-
Components of bottom-up gaze allocation in natural images
-
R. J. Peters, A. Iyer, L. Itti, and C. Koch, "Components of bottom-up gaze allocation in natural images, " Vis. Res., vol. 45, no. 8, pp. 2397-2416, 2005.
-
(2005)
Vis. Res.
, vol.45
, Issue.8
, pp. 2397-2416
-
-
Peters, R.J.1
Iyer, A.2
Itti, L.3
Koch, C.4
-
66
-
-
84886280179
-
Modeling fixation locations using spatial point processes
-
S. Barthelmé, H. Trukenbrod, R. Engbert, and F. Wichmann, "Modeling fixation locations using spatial point processes, " J. Vis., vol. 13, no. 12, p. 1, 2013.
-
(2013)
J. Vis.
, vol.13
, Issue.12
, pp. 1
-
-
Barthelmé, S.1
Trukenbrod, H.2
Engbert, R.3
Wichmann, F.4
-
67
-
-
84923094805
-
Global contrast based salient region detection
-
Mar.
-
M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu, "Global contrast based salient region detection, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 569-582, Mar. 2015.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.37
, Issue.3
, pp. 569-582
-
-
Cheng, M.-M.1
Mitra, N.J.2
Huang, X.3
Torr, P.H.S.4
Hu, S.-M.5
-
70
-
-
84866928176
-
On the relationship between optical variability, visual saliency, and eye fixations: A computational approach
-
A. Garcia-Diaz, V. Leborán, X. R. Fdez-Vidal, and X. M. Pardo, "On the relationship between optical variability, visual saliency, and eye fixations: A computational approach, " J. Vis., vol. 12, no. 6, p. 17, 2012.
-
(2012)
J. Vis.
, vol.12
, Issue.6
, pp. 17
-
-
Garcia-Diaz, A.1
Leborán, V.2
Fdez-Vidal, X.R.3
Pardo, X.M.4
-
71
-
-
84897056830
-
Analysis of scores, datasets, and models in visual saliency prediction
-
A. Borji, H. R. Tavakoli, D. N. Sihite, and L. Itti, "Analysis of scores, datasets, and models in visual saliency prediction, " in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 921-928.
-
(2013)
Proc. IEEE Int. Conf. Comput. Vis., Dec.
, pp. 921-928
-
-
Borji, A.1
Tavakoli, H.R.2
Sihite, D.N.3
Itti, L.4
-
72
-
-
79957836414
-
Learning a saliency map using fixated locations in natural scenes
-
Q. Zhao and C. Koch, "Learning a saliency map using fixated locations in natural scenes, " J. Vis., vol. 11, no. 3, p. 9, 2011.
-
(2011)
J. Vis.
, vol.11
, Issue.3
, pp. 9
-
-
Zhao, Q.1
Koch, C.2
|