메뉴 건너뛰기




Volumn 26, Issue 9, 2017, Pages 4446-4456

DeepFix: A Fully Convolutional Neural Network for Predicting Human Eye Fixations

Author keywords

convolutional neural network; deep learning; eye fixations; Saliency prediction

Indexed keywords

BEHAVIORAL RESEARCH; CONVOLUTION; DEEP LEARNING; FORECASTING; NEURAL NETWORKS; SEMANTICS;

EID: 85029208405     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2017.2710620     Document Type: Article
Times cited : (426)

References (73)
  • 1
    • 4644244389 scopus 로고    scopus 로고
    • Visual attention: Bottom-up versus top-down
    • C. E. Connor, H. E. Egeth, and S. Yantis, "Visual attention: Bottom-up versus top-down, " Current Biol., vol. 14, no. 19, pp. R850-R852, 2004.
    • (2004) Current Biol. , vol.14 , Issue.19 , pp. R850-R852
    • Connor, C.E.1    Egeth, H.E.2    Yantis, S.3
  • 2
    • 77955637257 scopus 로고    scopus 로고
    • Computational visual attention systems and their cognitive foundations: A survey
    • S. Frintrop, E. Rome, and H. I. Christensen, "Computational visual attention systems and their cognitive foundations: A survey, " ACM Trans. Appl. Perception, vol. 7, no. 1, p. 6, 2010.
    • (2010) ACM Trans. Appl. Perception , vol.7 , Issue.1 , pp. 6
    • Frintrop, S.1    Rome, E.2    Christensen, H.I.3
  • 3
    • 33645887250 scopus 로고    scopus 로고
    • Interactions between attention and working memory
    • E. Awh, E. K. Vogel, and S.-H. Oh, "Interactions between attention and working memory, " Neuroscience, vol. 139, no. 1, pp. 201-208, 2006.
    • (2006) Neuroscience , vol.139 , Issue.1 , pp. 201-208
    • Awh, E.1    Vogel, E.K.2    Oh, S.-H.3
  • 4
    • 0018878142 scopus 로고
    • A feature-integration theory of attention
    • Jan.
    • A. M. Treisman and G. Gelade, "A feature-integration theory of attention, " Cognit. Psychol., vol. 12, no. 1, pp. 97-136, Jan. 1980.
    • (1980) Cognit. Psychol. , vol.12 , Issue.1 , pp. 97-136
    • Treisman, A.M.1    Gelade, G.2
  • 5
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • Nov.
    • L. Itti, C. Koch, and E. Niebur, "A model of saliency-based visual attention for rapid scene analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254-1259, Nov. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.11 , pp. 1254-1259
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 6
    • 84888246981 scopus 로고    scopus 로고
    • Saliency-aware video compression
    • Jan.
    • H. Hadizadeh and I. V. Bajíc, "Saliency-aware video compression, " IEEE Trans. Image Process., vol. 23, no. 1, pp. 19-33, Jan. 2014.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.1 , pp. 19-33
    • Hadizadeh, H.1    Bajíc, I.V.2
  • 9
    • 2942739263 scopus 로고    scopus 로고
    • A visual attention model for adapting images on small displays
    • Oct.
    • L.-Q. Chen, X. Xie, X. Fan, W.-Y. Ma, H.-J. Zhang, and H.-Q. Zhou, "A visual attention model for adapting images on small displays, " Multimedia Syst., vol. 9, no. 4, pp. 353-364, Oct. 2003.
    • (2003) Multimedia Syst. , vol.9 , Issue.4 , pp. 353-364
    • Chen, L.-Q.1    Xie, X.2    Fan, X.3    Ma, W.-Y.4    Zhang, H.-J.5    Zhou, H.-Q.6
  • 10
    • 79952814789 scopus 로고    scopus 로고
    • A spatiotemporal saliency model for video surveillance
    • T. Yubing, F. A. Cheikh, F. F. E. Guraya, H. Konik, and A. Trémeau, "A spatiotemporal saliency model for video surveillance, " Cognit. Comput., vol. 3, no. 1, pp. 241-263, 2011.
    • (2011) Cognit. Comput. , vol.3 , Issue.1 , pp. 241-263
    • Yubing, T.1    Cheikh, F.A.2    Guraya, F.F.E.3    Konik, H.4    Trémeau, A.5
  • 11
    • 78650903742 scopus 로고    scopus 로고
    • Saliency map
    • E. Niebur, "Saliency map, " Scholarpedia, vol. 2, no. 8, p. 2675, 2007.
    • (2007) Scholarpedia , vol.2 , Issue.8 , pp. 2675
    • Niebur, E.1
  • 13
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Nov.
    • G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, " IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
    • (2012) IEEE Signal Process. Mag. , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 14
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural networks with multitask learning, " in Proc. Int. Conf. Mach. Learn., 2008, pp. 160-167.
    • (2008) Proc. Int. Conf. Mach. Learn. , pp. 160-167
    • Collobert, R.1    Weston, J.2
  • 16
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • L. Bottou, "Large-scale machine learning with stochastic gradient descent, " in Proc. COMPSTAT, 2010, pp. 177-186.
    • (2010) Proc. COMPSTAT , pp. 177-186
    • Bottou, L.1
  • 17
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • Apr.
    • O. Russakovsky et al., "ImageNet large scale visual recognition challenge, " Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Apr. 2015.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 25
    • 84893634313 scopus 로고    scopus 로고
    • Predicting human gaze beyond pixels
    • J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao, "Predicting human gaze beyond pixels, " J. Vis., vol. 14, no. 1, pp. 1-20, 2014.
    • (2014) J. Vis. , vol.14 , Issue.1 , pp. 1-20
    • Xu, J.1    Jiang, M.2    Wang, S.3    Kankanhalli, M.S.4    Zhao, Q.5
  • 26
    • 84946605063 scopus 로고    scopus 로고
    • Intrinsic and extrinsic effects on image memorability
    • Nov.
    • Z. Bylinskii, P. Isola, C. Bainbridge, A. Torralba, and A. Oliva, "Intrinsic and extrinsic effects on image memorability, " Vis. Res., vol. 116, pp. 165-178, Nov. 2015.
    • (2015) Vis. Res. , vol.116 , pp. 165-178
    • Bylinskii, Z.1    Isola, P.2    Bainbridge, C.3    Torralba, A.4    Oliva, A.5
  • 28
    • 0022388528 scopus 로고
    • Shifts in selective visual attention: Towards the underlying neural circuitry
    • C. Koch and S. Ullman, "Shifts in selective visual attention: Towards the underlying neural circuitry, " Human Neurobiol., vol. 4, no. 4, pp. 219-227, 1985.
    • (1985) Human Neurobiol. , vol.4 , Issue.4 , pp. 219-227
    • Koch, C.1    Ullman, S.2
  • 29
  • 30
    • 84874539078 scopus 로고    scopus 로고
    • Saliency detection using regional histograms
    • Z. Liu, O. Le Meur, S. Luo, and L. Shen, "Saliency detection using regional histograms, " Opt. Lett., vol. 38, no. 5, pp. 700-702, 2013.
    • (2013) Opt. Lett. , vol.38 , Issue.5 , pp. 700-702
    • Liu, Z.1    Le Meur, O.2    Luo, S.3    Shen, L.4
  • 32
    • 84878384522 scopus 로고    scopus 로고
    • Visual saliency estimation by nonlinearly integrating features using region covariances
    • Mar.
    • E. Erdem and A. Erdem, "Visual saliency estimation by nonlinearly integrating features using region covariances, " J. Vis., vol. 13, no. 4, p. 11, Mar. 2013.
    • (2013) J. Vis. , vol.13 , Issue.4 , pp. 11
    • Erdem, E.1    Erdem, A.2
  • 39
    • 84899945571 scopus 로고    scopus 로고
    • Learning to predict eye fixations for semantic contents using multi-layer sparse network
    • Aug.
    • C. Shen and Q. Zhao, "Learning to predict eye fixations for semantic contents using multi-layer sparse network, " Neurocomputing, vol. 138, pp. 61-68, Aug. 2014.
    • (2014) Neurocomputing , vol.138 , pp. 61-68
    • Shen, C.1    Zhao, Q.2
  • 40
    • 84911369162 scopus 로고    scopus 로고
    • Large-scale optimization of hierarchical features for saliency prediction in natural images
    • E. Vig, M. Dorr, and D. Cox, "Large-scale optimization of hierarchical features for saliency prediction in natural images, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 2798-2805.
    • (2014) Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. , pp. 2798-2805
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 43
    • 84973923049 scopus 로고    scopus 로고
    • SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks
    • X. Huang, C. Shen, X. Boix, and Q. Zhao, "SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks, " in Proc. IEEE Int. Conf. Comput. Vis., Jun. 2015, pp. 262-270.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis., Jun. , pp. 262-270
    • Huang, X.1    Shen, C.2    Boix, X.3    Zhao, Q.4
  • 48
    • 85029213778 scopus 로고    scopus 로고
    • Deeplearning.net, accessed on Aug. 5, 2016. [Online]
    • Deeplearning.net, accessed on Aug. 5, 2016. [Online]. Available: http://deeplearning.net/tutorial/lenet.html#maxpooling
  • 52
    • 45749126005 scopus 로고    scopus 로고
    • Visual salience
    • L. Itti, "Visual salience, " Scholarpedia, vol. 2, no. 9, p. 3327, 2007.
    • (2007) Scholarpedia , vol.2 , Issue.9 , pp. 3327
    • Itti, L.1
  • 54
    • 36448979181 scopus 로고    scopus 로고
    • The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions
    • B. W Tatler, "The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions, " J. Vis., vol. 7, no. 14, p. 4, 2007.
    • (2007) J. Vis. , vol.7 , Issue.14 , pp. 4
    • Tatler, B.W.1
  • 55
    • 67650302087 scopus 로고    scopus 로고
    • Quantifying center bias of observers in free viewing of dynamic natural scenes
    • P.-H. Tseng, R. Carmi, I. G M. Cameron, D. P. Munoz, and L. Itti, "Quantifying center bias of observers in free viewing of dynamic natural scenes, " J. Vis., vol. 9, no. 7, p. 4, 2009.
    • (2009) J. Vis. , vol.9 , Issue.7 , pp. 4
    • Tseng, P.-H.1    Carmi, R.2    Cameron, I.G.M.3    Munoz, D.P.4    Itti, L.5
  • 56
    • 78149312625 scopus 로고    scopus 로고
    • What is the chance of happening: A new way to predict where people look
    • Y Yang, M. Song, N. Li, J. Bu, and C. Chen, "What is the chance of happening: A new way to predict where people look, " in Proc. Eur. Conf. Comput. Vis., 2010, pp. 631-643.
    • (2010) Proc. Eur. Conf. Comput. Vis. , pp. 631-643
    • Yang, Y.1    Song, M.2    Li, N.3    Bu, J.4    Chen, C.5
  • 59
    • 84921759894 scopus 로고    scopus 로고
    • What is a salient object? A dataset and a baseline model for salient object detection
    • Feb.
    • A. Borji, "What is a salient object? A dataset and a baseline model for salient object detection, " IEEE Trans. Image Process., vol. 24, no. 2, pp. 742-756, Feb. 2015.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.2 , pp. 742-756
    • Borji, A.1
  • 60
    • 84874351786 scopus 로고    scopus 로고
    • Methods for comparing scanpaths and saliency maps: Strengths and weaknesses
    • Mar.
    • O. Le Meur and T Baccino, "Methods for comparing scanpaths and saliency maps: Strengths and weaknesses, " Behavior Res. Methods, vol. 45, no. 1, pp. 251-266, Mar. 2013.
    • (2013) Behavior Res. Methods , vol.45 , Issue.1 , pp. 251-266
    • Le Meur, O.1    Baccino, T.2
  • 61
    • 84906493406 scopus 로고    scopus 로고
    • Microsoft COCO: Common objects in context
    • T.-Y Lin et al, "Microsoft COCO: Common objects in context, " in Proc. Eur. Conf. Comput. Vis., 2014, pp. 740-755.
    • (2014) Proc. Eur. Conf. Comput. Vis. , pp. 740-755
    • Lin, T.-Y.1
  • 62
    • 84921650810 scopus 로고    scopus 로고
    • accessed on Aug. 5, 2016. [Online]
    • Z. Bylinskii et al. MIT Saliency Benchmark, accessed on Aug. 5, 2016. [Online]. Available: http://saliency.mit.edu/
    • MIT Saliency Benchmark
    • Bylinskii, Z.1
  • 64
    • 50249088113 scopus 로고    scopus 로고
    • Applying computational tools to predict gaze direction in interactive visual environments
    • R. J. Peters and L. Itti, "Applying computational tools to predict gaze direction in interactive visual environments, " ACM Trans. Appl. Perception, vol. 5, no. 2, p. 9, 2008.
    • (2008) ACM Trans. Appl. Perception , vol.5 , Issue.2 , pp. 9
    • Peters, R.J.1    Itti, L.2
  • 65
    • 20544446875 scopus 로고    scopus 로고
    • Components of bottom-up gaze allocation in natural images
    • R. J. Peters, A. Iyer, L. Itti, and C. Koch, "Components of bottom-up gaze allocation in natural images, " Vis. Res., vol. 45, no. 8, pp. 2397-2416, 2005.
    • (2005) Vis. Res. , vol.45 , Issue.8 , pp. 2397-2416
    • Peters, R.J.1    Iyer, A.2    Itti, L.3    Koch, C.4
  • 66
    • 84886280179 scopus 로고    scopus 로고
    • Modeling fixation locations using spatial point processes
    • S. Barthelmé, H. Trukenbrod, R. Engbert, and F. Wichmann, "Modeling fixation locations using spatial point processes, " J. Vis., vol. 13, no. 12, p. 1, 2013.
    • (2013) J. Vis. , vol.13 , Issue.12 , pp. 1
    • Barthelmé, S.1    Trukenbrod, H.2    Engbert, R.3    Wichmann, F.4
  • 70
    • 84866928176 scopus 로고    scopus 로고
    • On the relationship between optical variability, visual saliency, and eye fixations: A computational approach
    • A. Garcia-Diaz, V. Leborán, X. R. Fdez-Vidal, and X. M. Pardo, "On the relationship between optical variability, visual saliency, and eye fixations: A computational approach, " J. Vis., vol. 12, no. 6, p. 17, 2012.
    • (2012) J. Vis. , vol.12 , Issue.6 , pp. 17
    • Garcia-Diaz, A.1    Leborán, V.2    Fdez-Vidal, X.R.3    Pardo, X.M.4
  • 72
    • 79957836414 scopus 로고    scopus 로고
    • Learning a saliency map using fixated locations in natural scenes
    • Q. Zhao and C. Koch, "Learning a saliency map using fixated locations in natural scenes, " J. Vis., vol. 11, no. 3, p. 9, 2011.
    • (2011) J. Vis. , vol.11 , Issue.3 , pp. 9
    • Zhao, Q.1    Koch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.