메뉴 건너뛰기




Volumn 138, Issue , 2014, Pages 61-68

Learning to predict eye fixations for semantic contents using multi-layer sparse network

Author keywords

Deep learning; Gaze prediction; Semantic saliency; Sparse coding

Indexed keywords

IMAGE RETRIEVAL; SEMANTICS; SUPPORT VECTOR MACHINES;

EID: 84899945571     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.09.053     Document Type: Article
Times cited : (42)

References (31)
  • 1
    • 0018878142 scopus 로고
    • A feature-integration theory of attention
    • Treisman A., Gelade G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12(1):97-136.
    • (1980) Cogn. Psychol. , vol.12 , Issue.1 , pp. 97-136
    • Treisman, A.1    Gelade, G.2
  • 2
    • 0022388528 scopus 로고
    • Shifts in selective visual attention. towards the underlying neural circuitry
    • Koch C., Ullman S. Shifts in selective visual attention. towards the underlying neural circuitry. Hum. Neurobiol. 1985, 4(4):219-227.
    • (1985) Hum. Neurobiol. , vol.4 , Issue.4 , pp. 219-227
    • Koch, C.1    Ullman, S.2
  • 3
    • 84875275420 scopus 로고    scopus 로고
    • Learning saliency-based visual attention. a review
    • Zhao Q., Koch C. Learning saliency-based visual attention. a review. Signal Process. 2013, 93(6):1401-1407.
    • (2013) Signal Process. , vol.93 , Issue.6 , pp. 1401-1407
    • Zhao, Q.1    Koch, C.2
  • 4
    • 0034003645 scopus 로고    scopus 로고
    • A saliency-based search mechanism for overt and covert shifts of visual attention
    • Itti L., Koch C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 2000, 40(10-12):1489-1506.
    • (2000) Vis. Res. , vol.40 , Issue.10-12 , pp. 1489-1506
    • Itti, L.1    Koch, C.2
  • 6
    • 56849086466 scopus 로고    scopus 로고
    • Objects predict fixations better than early saliency, J. Vis.
    • W. Einhäuser, M. Spain, P. Perona, Objects predict fixations better than early saliency, J. Vis. 8(14) (2008).
    • (2008) , vol.8 , Issue.14
    • Einhäuser, W.1    Spain, M.2    Perona, P.3
  • 7
    • 77953205576 scopus 로고    scopus 로고
    • Learning to predict where humans look, in: 2009 IEEE 12th International Conference on Computer Vision, Koyto, Japan
    • T. Judd, K. Ehinger, F. Durand, A. Torralba, Learning to predict where humans look, in: 2009 IEEE 12th International Conference on Computer Vision, Koyto, Japan, 2009, pp. 2106-2113.
    • (2009) , pp. 2106-2113
    • Judd, T.1    Ehinger, K.2    Durand, F.3    Torralba, A.4
  • 8
    • 84899981104 scopus 로고    scopus 로고
    • Predicting human gaze using low-level saliency combined with face detection, Adv. Neural Inf. Process. Syst.
    • M. Cerf, J. Harel, W. Einhäuser, C. Koch, Predicting human gaze using low-level saliency combined with face detection, Adv. Neural Inf. Process. Syst. 20 (2008).
    • (2008) , vol.20
    • Cerf, M.1    Harel, J.2    Einhäuser, W.3    Koch, C.4
  • 9
    • 79957836414 scopus 로고    scopus 로고
    • Learning a saliency map using fixated locations in natural scenes, J. Vis
    • Q. Zhao, C. Koch, Learning a saliency map using fixated locations in natural scenes, J. Vis. 11(3) (2011).
    • (2011) , vol.11 , Issue.3
    • Zhao, Q.1    Koch, C.2
  • 10
    • 79957804527 scopus 로고    scopus 로고
    • Learning visual saliency, in: 2011 45th Annual Conference on Information Sciences and Systems (CISS), IEEE, Baltimore, USA
    • Q. Zhao, C. Koch, Learning visual saliency, in: 2011 45th Annual Conference on Information Sciences and Systems (CISS), IEEE, Baltimore, USA, 2011, pp. 1-6.
    • (2011) , pp. 1-6
    • Zhao, Q.1    Koch, C.2
  • 11
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Canada
    • H. Lee, R. Grosse, R. Ranganath, A. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: Proceedings of the 26th Annual International Conference on Machine Learning, ACM, Montreal, Canada, 2009, pp. 609-616.
    • (2009) , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.4
  • 12
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning, in: 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, Barcelona, Spain
    • M. Zeiler, G. Taylor, R. Fergus, Adaptive deconvolutional networks for mid and high level feature learning, in: 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, Barcelona, Spain, 2011, pp. 2018-2025.
    • (2011) , pp. 2018-2025
    • Zeiler, M.1    Taylor, G.2    Fergus, R.3
  • 13
    • 84899976554 scopus 로고    scopus 로고
    • Building High-Level Features using Large Scale Unsupervised Learning, Arxiv Preprint
    • Q. Le, R. Monga, M. Devin, G. Corrado, K. Chen, M. Ranzato, J. Dean, A. Ng, Building High-Level Features using Large Scale Unsupervised Learning, Arxiv Preprint. http://arxiv:1112.6209.
    • Le, Q.1    Monga, R.2    Devin, M.3    Corrado, G.4    Chen, K.5    Ranzato, M.6    Dean, J.7    Ng, A.8
  • 14
    • 84899931097 scopus 로고    scopus 로고
    • A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex, Technical Report, DTIC Document
    • T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio, A Theory of Object Recognition: Computations and Circuits in the Feedforward Path of the Ventral Stream in Primate Visual Cortex, Technical Report, DTIC Document, 2005.
    • (2005)
    • Serre, T.1    Kouh, M.2    Cadieu, C.3    Knoblich, U.4    Kreiman, G.5    Poggio, T.6
  • 15
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Bengio Y. Learning deep architectures for AI. Found. Trends Mach. Learn. 2009, 2(1):1-127.
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 16
    • 84899910333 scopus 로고    scopus 로고
    • Learning high-level concepts by training a deep network on eye fixations, in: Deep Learning and Unsupervised Feature Learning Workshop, In Conduction with NIPS, Lake Tahoe, USA, December
    • C. Shen, M. Song, Q. Zhao, Learning high-level concepts by training a deep network on eye fixations, in: Deep Learning and Unsupervised Feature Learning Workshop, In Conduction with NIPS, Lake Tahoe, USA, December 2012.
    • (2012)
    • Shen, C.1    Song, M.2    Zhao, Q.3
  • 17
    • 77950357909 scopus 로고    scopus 로고
    • Faces and text attract gaze independent of the task: experimental data and computer model, J. Vis.
    • M. Cerf, E. Frady, C. Koch, Faces and text attract gaze independent of the task: experimental data and computer model, J. Vis. 9(12) (2009).
    • (2009) , vol.9 , Issue.12
    • Cerf, M.1    Frady, E.2    Koch, C.3
  • 18
    • 84866723453 scopus 로고    scopus 로고
    • Learning attention map from images, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Rhode Island, USA
    • Y. Lu, W. Zhang, C. Jin, X. Xue, Learning attention map from images, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Rhode Island, USA, 2012, pp. 1067-1074.
    • (2012) , pp. 1067-1074
    • Lu, Y.1    Zhang, W.2    Jin, C.3    Xue, X.4
  • 19
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples. an incremental Bayesian approach tested on 101 object categories
    • Fei-Fei L., Fergus R., Perona P. Learning generative visual models from few training examples. an incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 2007, 106(1):59-70.
    • (2007) Comput. Vis. Image Underst. , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 20
    • 0019152630 scopus 로고
    • Neocognitron. a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron. a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 1980, 36(4):193-202.
    • (1980) Biol. Cybern. , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 21
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber M., Poggio T., et al. Hierarchical models of object recognition in cortex. Nat. Neurosci. 1999, 2:1019-1025.
    • (1999) Nat. Neurosci. , vol.2 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 24
    • 0842346365 scopus 로고    scopus 로고
    • Visual saliency and spike timing in the ventral visual pathway
    • Vanrullen R. Visual saliency and spike timing in the ventral visual pathway. J. Physiol.-Paris 2003, 97(2-3):365-377.
    • (2003) J. Physiol.-Paris , vol.97 , Issue.2-3 , pp. 365-377
    • Vanrullen, R.1
  • 25
    • 0002014402 scopus 로고
    • Possible principles underlying the transformation of sensory messages
    • Barlow H. Possible principles underlying the transformation of sensory messages. Sens. Commun. 1961, 217-234.
    • (1961) Sens. Commun. , pp. 217-234
    • Barlow, H.1
  • 26
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set. a strategy employed by v1?
    • Olshausen B., Field D. Sparse coding with an overcomplete basis set. a strategy employed by v1?. Vis. Res. 1997, 37(23):3311-3325.
    • (1997) Vis. Res. , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 27
    • 84898407461 scopus 로고    scopus 로고
    • Learning hierarchical image representation with sparsity, saliency and locality, in: Jesse Hoey, Stephen McKenna, Emanuele Trucco (Eds.), Proceedings of the British Machine Vision Conference, Dundee, Scotland 19.1-19.11.
    • J. Yang, M. Yang, Learning hierarchical image representation with sparsity, saliency and locality, in: Jesse Hoey, Stephen McKenna, Emanuele Trucco (Eds.), Proceedings of the British Machine Vision Conference, Dundee, Scotland, 2011, pp. 19.1-19.11.
    • (2011)
    • Yang, J.1    Yang, M.2
  • 29
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition, in: International Conference on Machine Learning, Haifa, Israel
    • Y. Boureau, J. Ponce, Y. Lecun, A theoretical analysis of feature pooling in visual recognition, in: International Conference on Machine Learning, Haifa, Israel, 2010, pp. 111-118.
    • (2010) , pp. 111-118
    • Boureau, Y.1    Ponce, J.2    Lecun, Y.3
  • 30
    • 0029880979 scopus 로고    scopus 로고
    • Efficient coding of natural scenes in the lateral geniculate nucleus. experimental test of a computational theory
    • Dan Y., Atick J., Reid R. Efficient coding of natural scenes in the lateral geniculate nucleus. experimental test of a computational theory. J. Neurosci. 1996, 16(10):3351-3362.
    • (1996) J. Neurosci. , vol.16 , Issue.10 , pp. 3351-3362
    • Dan, Y.1    Atick, J.2    Reid, R.3
  • 31
    • 70449695436 scopus 로고    scopus 로고
    • Natural Image Statistics: A Probabilistic Approach to Early Computational Vision Springer
    • A. Hyvärinen, J. Hurri, P. Hoyer, Natural Image Statistics: A Probabilistic Approach to Early Computational Vision, vol. 39, Springer, 2009.
    • (2009) , vol.39
    • Hyvärinen, A.1    Hurri, J.2    Hoyer, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.