-
1
-
-
84866687480
-
Exploiting local and global patch rarities for saliency detection
-
A. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In CVPR, 2012.
-
(2012)
CVPR
-
-
Borji, A.1
Itti, L.2
-
2
-
-
84864039864
-
Saliency based on information maximization
-
N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005.
-
(2005)
NIPS
-
-
Bruce, N.1
Tsotsos, J.2
-
3
-
-
84921650810
-
-
Z. Bylinskii, T. Judd, A. Borji, L. Itti, F. Durand, A. Oliva, and A. Torralba. Mit saliency benchmark. http: //saliency. mit. edu/.
-
Mit Saliency Benchmark.
-
-
Bylinskii, Z.1
Judd, T.2
Borji, A.3
Itti, L.4
Durand, F.5
Oliva, A.6
Torralba, A.7
-
4
-
-
85161958871
-
Predicting human gaze using low-level saliency combined with face detection
-
M. Cerf, J. Harel, W. Einhäuser, and C. Koch. Predicting human gaze using low-level saliency combined with face detection. In NIPS, 2008.
-
(2008)
NIPS
-
-
Cerf, M.1
Harel, J.2
Einhäuser, W.3
Koch, C.4
-
5
-
-
84911479980
-
Saliency modeling via outlier detection
-
C. Chen, H. Tang, Z. Lyu, H. Liang, J. Shang, and M. Serem. Saliency modeling via outlier detection. JEI, 2014.
-
(2014)
JEI
-
-
Chen, C.1
Tang, H.2
Lyu, Z.3
Liang, H.4
Shang, J.5
Serem, M.6
-
6
-
-
72249100259
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
56849086466
-
Objects predict fixations better than early saliency
-
W. Einhäuser, M. Spain, and P. Perona. Objects predict fixations better than early saliency. JoV, 2008.
-
(2008)
JoV
-
-
Einhäuser, W.1
Spain, M.2
Perona, P.3
-
8
-
-
84878384522
-
Visual saliency estimation by nonlinearly integrating features using region covariances
-
E. Erdem and A. Erdem. Visual saliency estimation by nonlinearly integrating features using region covariances. JoV, 2013.
-
(2013)
JoV
-
-
Erdem, E.1
Erdem, A.2
-
9
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010.
-
(2010)
IJCV
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.K.3
Winn, J.4
Zisserman, A.5
-
15
-
-
81855172211
-
Image signature: Highlighting sparse salient regions
-
X. Hou, J. Harel, and C. Koch. Image signature: Highlighting sparse salient regions. TPAMI, 2012.
-
(2012)
TPAMI
-
-
Hou, X.1
Harel, J.2
Koch, C.3
-
16
-
-
0034003645
-
A saliency-based search mechanism for overt and covert shifts of visual attention
-
L. Itti and C. Koch. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. res., 2000.
-
(2000)
Vis. Res.
-
-
Itti, L.1
Koch, C.2
-
18
-
-
0032204063
-
A model of saliency-based visual attention for rapid scene analysis
-
L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, 1998.
-
(1998)
TPAMI
-
-
Itti, L.1
Koch, C.2
Niebur, E.3
-
19
-
-
24944482609
-
Assessing the contribution of color in visual attention
-
T. Jost, N. Ouerhani, R. Von Wartburg, R. Müri, and H. Hügli. Assessing the contribution of color in visual attention. Computer Vision and Image Understanding, 2005.
-
(2005)
Computer Vision and Image Understanding
-
-
Jost, T.1
Ouerhani, N.2
Von Wartburg, R.3
Müri, R.4
Hügli, H.5
-
22
-
-
0003153058
-
Shifts in selective visual attention: Towards the underlying neural circuitry
-
C. Koch and S. Ullman. Shifts in selective visual attention: Towards the underlying neural circuitry. In Matters of intelligence. 1987.
-
(1987)
Matters of Intelligence
-
-
Koch, C.1
Ullman, S.2
-
23
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
25
-
-
84911400874
-
The secrets of salient object segmentation
-
Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient object segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Li, Y.1
Hou, X.2
Koch, C.3
Rehg, J.M.4
Yuille, A.L.5
-
26
-
-
84946554818
-
Predicting eye fixations using convolutional neural networks
-
N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting eye fixations using convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Liu, N.1
Han, J.2
Zhang, D.3
Wen, S.4
Liu, T.5
-
27
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
28
-
-
20544446875
-
Components of bottom-up gaze allocation in natural images
-
R. J. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images. Vis. res., 2005.
-
(2005)
Vis. Res.
-
-
Peters, R.J.1
Iyer, A.2
Itti, L.3
Koch, C.4
-
30
-
-
84878015694
-
Rare2012: A multi-scale raritybased saliency detection with its comparative statistical analysis
-
N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini, B. Gosselin, and T. Dutoit. Rare2012: A multi-scale raritybased saliency detection with its comparative statistical analysis. Signal Proc. : Image Comm., 2013.
-
(2013)
Signal Proc. : Image Comm.
-
-
Riche, N.1
Mancas, M.2
Duvinage, M.3
Mibulumukini, M.4
Gosselin, B.5
Dutoit, T.6
-
32
-
-
84898777920
-
Quaternion-based spectral saliency detection for eye fixation prediction
-
B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction. In ECCV. 2012.
-
(2012)
ECCV
-
-
Schauerte, B.1
Stiefelhagen, R.2
-
33
-
-
84899945571
-
Learning to predict eye fixations for semantic contents using multi-layer sparse network
-
C. Shen and Q. Zhao. Learning to predict eye fixations for semantic contents using multi-layer sparse network. Neurocomputing, 2014.
-
(2014)
Neurocomputing
-
-
Shen, C.1
Zhao, Q.2
-
34
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
35
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
36
-
-
11144343233
-
Visual correlates of fixation selection: Effects of scale and time
-
B. W. Tatler, R. J. Baddeley, and I. D. Gilchrist. Visual correlates of fixation selection: effects of scale and time. Vis. res., 2005.
-
(2005)
Vis. Res.
-
-
Tatler, B.W.1
Baddeley, R.J.2
Gilchrist, I.D.3
-
38
-
-
84962815548
-
Matconvnet-convolutional neural networks for matlab
-
A. Vedaldi and K. Lenc. Matconvnet-convolutional neural networks for matlab. In ACM Multimedia, 2015.
-
(2015)
ACM Multimedia
-
-
Vedaldi, A.1
Lenc, K.2
-
39
-
-
84911369162
-
Large-scale optimization of hierarchical features for saliency prediction in natural images
-
E. Vig, M. Dorr, and D. Cox. Large-scale optimization of hierarchical features for saliency prediction in natural images. In CVPR, 2014.
-
(2014)
CVPR
-
-
Vig, E.1
Dorr, M.2
Cox, D.3
-
40
-
-
84893634313
-
Predicting human gaze beyond pixels
-
J. Xu, M. Jiang, S. Wang, M. S. Kankanhalli, and Q. Zhao. Predicting human gaze beyond pixels. JoV, 2014.
-
(2014)
JoV
-
-
Xu, J.1
Jiang, M.2
Wang, S.3
Kankanhalli, M.S.4
Zhao, Q.5
-
41
-
-
84966582502
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV. 2014.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
42
-
-
84898819857
-
Saliency detection: A boolean map approach
-
J. Zhang and S. Sclaroff. Saliency detection: A boolean map approach. In ICCV, 2013.
-
(2013)
ICCV
-
-
Zhang, J.1
Sclaroff, S.2
-
43
-
-
58149506125
-
Sun: A Bayesian framework for saliency using natural statistics
-
L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. Sun: A Bayesian framework for saliency using natural statistics. JoV, 2008.
-
(2008)
JoV
-
-
Zhang, L.1
Tong, M.H.2
Marks, T.K.3
Shan, H.4
Cottrell, G.W.5
-
44
-
-
84865657272
-
Learning visual saliency by combining feature maps in a nonlinear manner using adaboost
-
Q. Zhao and C. Koch. Learning visual saliency by combining feature maps in a nonlinear manner using adaboost. JoV, 2012.
-
(2012)
JoV
-
-
Zhao, Q.1
Koch, C.2
|