메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 262-270

SALICON: Reducing the semantic gap in saliency prediction by adapting deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BEHAVIORAL RESEARCH; COMPUTER VISION; EYE MOVEMENTS; OBJECT RECOGNITION; SEMANTICS;

EID: 84973923049     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.38     Document Type: Conference Paper
Times cited : (639)

References (44)
  • 1
    • 84866687480 scopus 로고    scopus 로고
    • Exploiting local and global patch rarities for saliency detection
    • A. Borji and L. Itti. Exploiting local and global patch rarities for saliency detection. In CVPR, 2012.
    • (2012) CVPR
    • Borji, A.1    Itti, L.2
  • 2
    • 84864039864 scopus 로고    scopus 로고
    • Saliency based on information maximization
    • N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005.
    • (2005) NIPS
    • Bruce, N.1    Tsotsos, J.2
  • 4
    • 85161958871 scopus 로고    scopus 로고
    • Predicting human gaze using low-level saliency combined with face detection
    • M. Cerf, J. Harel, W. Einhäuser, and C. Koch. Predicting human gaze using low-level saliency combined with face detection. In NIPS, 2008.
    • (2008) NIPS
    • Cerf, M.1    Harel, J.2    Einhäuser, W.3    Koch, C.4
  • 7
    • 56849086466 scopus 로고    scopus 로고
    • Objects predict fixations better than early saliency
    • W. Einhäuser, M. Spain, and P. Perona. Objects predict fixations better than early saliency. JoV, 2008.
    • (2008) JoV
    • Einhäuser, W.1    Spain, M.2    Perona, P.3
  • 8
    • 84878384522 scopus 로고    scopus 로고
    • Visual saliency estimation by nonlinearly integrating features using region covariances
    • E. Erdem and A. Erdem. Visual saliency estimation by nonlinearly integrating features using region covariances. JoV, 2013.
    • (2013) JoV
    • Erdem, E.1    Erdem, A.2
  • 10
  • 14
    • 85156217966 scopus 로고    scopus 로고
    • Graph-based visual saliency
    • J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. In NIPS, 2006.
    • (2006) NIPS
    • Harel, J.1    Koch, C.2    Perona, P.3
  • 15
    • 81855172211 scopus 로고    scopus 로고
    • Image signature: Highlighting sparse salient regions
    • X. Hou, J. Harel, and C. Koch. Image signature: Highlighting sparse salient regions. TPAMI, 2012.
    • (2012) TPAMI
    • Hou, X.1    Harel, J.2    Koch, C.3
  • 16
    • 0034003645 scopus 로고    scopus 로고
    • A saliency-based search mechanism for overt and covert shifts of visual attention
    • L. Itti and C. Koch. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. res., 2000.
    • (2000) Vis. Res.
    • Itti, L.1    Koch, C.2
  • 18
    • 0032204063 scopus 로고    scopus 로고
    • A model of saliency-based visual attention for rapid scene analysis
    • L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. TPAMI, 1998.
    • (1998) TPAMI
    • Itti, L.1    Koch, C.2    Niebur, E.3
  • 22
    • 0003153058 scopus 로고
    • Shifts in selective visual attention: Towards the underlying neural circuitry
    • C. Koch and S. Ullman. Shifts in selective visual attention: Towards the underlying neural circuitry. In Matters of intelligence. 1987.
    • (1987) Matters of Intelligence
    • Koch, C.1    Ullman, S.2
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 26
    • 84946554818 scopus 로고    scopus 로고
    • Predicting eye fixations using convolutional neural networks
    • N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting eye fixations using convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Liu, N.1    Han, J.2    Zhang, D.3    Wen, S.4    Liu, T.5
  • 27
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 28
    • 20544446875 scopus 로고    scopus 로고
    • Components of bottom-up gaze allocation in natural images
    • R. J. Peters, A. Iyer, L. Itti, and C. Koch. Components of bottom-up gaze allocation in natural images. Vis. res., 2005.
    • (2005) Vis. Res.
    • Peters, R.J.1    Iyer, A.2    Itti, L.3    Koch, C.4
  • 32
    • 84898777920 scopus 로고    scopus 로고
    • Quaternion-based spectral saliency detection for eye fixation prediction
    • B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction. In ECCV. 2012.
    • (2012) ECCV
    • Schauerte, B.1    Stiefelhagen, R.2
  • 33
    • 84899945571 scopus 로고    scopus 로고
    • Learning to predict eye fixations for semantic contents using multi-layer sparse network
    • C. Shen and Q. Zhao. Learning to predict eye fixations for semantic contents using multi-layer sparse network. Neurocomputing, 2014.
    • (2014) Neurocomputing
    • Shen, C.1    Zhao, Q.2
  • 34
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 36
    • 11144343233 scopus 로고    scopus 로고
    • Visual correlates of fixation selection: Effects of scale and time
    • B. W. Tatler, R. J. Baddeley, and I. D. Gilchrist. Visual correlates of fixation selection: effects of scale and time. Vis. res., 2005.
    • (2005) Vis. Res.
    • Tatler, B.W.1    Baddeley, R.J.2    Gilchrist, I.D.3
  • 38
    • 84962815548 scopus 로고    scopus 로고
    • Matconvnet-convolutional neural networks for matlab
    • A. Vedaldi and K. Lenc. Matconvnet-convolutional neural networks for matlab. In ACM Multimedia, 2015.
    • (2015) ACM Multimedia
    • Vedaldi, A.1    Lenc, K.2
  • 39
    • 84911369162 scopus 로고    scopus 로고
    • Large-scale optimization of hierarchical features for saliency prediction in natural images
    • E. Vig, M. Dorr, and D. Cox. Large-scale optimization of hierarchical features for saliency prediction in natural images. In CVPR, 2014.
    • (2014) CVPR
    • Vig, E.1    Dorr, M.2    Cox, D.3
  • 41
    • 84966582502 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV. 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 42
    • 84898819857 scopus 로고    scopus 로고
    • Saliency detection: A boolean map approach
    • J. Zhang and S. Sclaroff. Saliency detection: A boolean map approach. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, J.1    Sclaroff, S.2
  • 43
    • 58149506125 scopus 로고    scopus 로고
    • Sun: A Bayesian framework for saliency using natural statistics
    • L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell. Sun: A Bayesian framework for saliency using natural statistics. JoV, 2008.
    • (2008) JoV
    • Zhang, L.1    Tong, M.H.2    Marks, T.K.3    Shan, H.4    Cottrell, G.W.5
  • 44
    • 84865657272 scopus 로고    scopus 로고
    • Learning visual saliency by combining feature maps in a nonlinear manner using adaboost
    • Q. Zhao and C. Koch. Learning visual saliency by combining feature maps in a nonlinear manner using adaboost. JoV, 2012.
    • (2012) JoV
    • Zhao, Q.1    Koch, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.