메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2875-2883

Understanding deep features with computer-generated imagery

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED DESIGN; COMPUTER VISION; IMAGE ANALYSIS; NETWORK LAYERS; NEURAL NETWORKS; PRINCIPAL COMPONENT ANALYSIS; THREE DIMENSIONAL COMPUTER GRAPHICS;

EID: 84973922850     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.329     Document Type: Conference Paper
Times cited : (133)

References (43)
  • 1
    • 84973389608 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In ECCV, 2014.
    • (2014) ECCV
    • Agrawal, P.1    Girshick, R.2    Malik, J.3
  • 2
    • 84911409986 scopus 로고    scopus 로고
    • Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
    • M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models. In CVPR, 2014.
    • (2014) CVPR
    • Aubry, M.1    Maturana, D.2    Efros, A.A.3    Russell, B.C.4    Sivic, J.5
  • 3
    • 84899113050 scopus 로고    scopus 로고
    • Painting-to-3D model alignment via discriminative visual elements
    • M. Aubry, B. C. Russell, and J. Sivic. Painting-to-3D model alignment via discriminative visual elements. ACM Transactions on Graphics, 33 (2), 2014.
    • (2014) ACM Transactions on Graphics , vol.33 , Issue.2
    • Aubry, M.1    Russell, B.C.2    Sivic, J.3
  • 5
    • 33745930513 scopus 로고    scopus 로고
    • On the analysis and interpretation of inhomogeneous quadratic forms as receptive fields
    • P. Berkes and L. Wiskott. On the analysis and interpretation of inhomogeneous quadratic forms as receptive fields. Neural Computation, 2006.
    • (2006) Neural Computation
    • Berkes, P.1    Wiskott, L.2
  • 7
    • 84879877798 scopus 로고    scopus 로고
    • Invariant scattering convolution networks
    • J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE PAMI, 35 (8): 1872-1886, 2013.
    • (2013) IEEE PAMI , vol.35 , Issue.8 , pp. 1872-1886
    • Bruna, J.1    Mallat, S.2
  • 8
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In Proc. BMVC., 2014.
    • (2014) Proc. BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 10
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 12
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 14
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006.
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 18
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 20
    • 84455168545 scopus 로고    scopus 로고
    • A large-scale hierarchical multi-view RGB-D object dataset
    • K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view RGB-D object dataset. In ICRA, 2011.
    • (2011) ICRA
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 22
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Y. LeCun, F.-J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. In CVPR, 2004.
    • (2004) CVPR
    • LeCun, Y.1    Huang, F.-J.2    Bottou, L.3
  • 23
    • 0042441074 scopus 로고    scopus 로고
    • Analyzing appearance and contour based methods for object categorization
    • IEEE
    • B. Leibe and B. Schiele. Analyzing appearance and contour based methods for object categorization. In CVPR, volume 2, pages II-409. IEEE, 2003.
    • (2003) CVPR , vol.2 , pp. II-409
    • Leibe, B.1    Schiele, B.2
  • 24
    • 84959210421 scopus 로고    scopus 로고
    • Understanding image representations by measuring their equivariance and equivalence
    • K. Lenc and A. Vedaldi. Understanding image representations by measuring their equivariance and equivalence. In CVPR, 2015.
    • (2015) CVPR
    • Lenc, K.1    Vedaldi, A.2
  • 25
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, 2015.
    • (2015) CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 26
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2 (11): 559-572, 1901.
    • (1901) Philosophical Magazine , vol.2 , Issue.11 , pp. 559-572
    • Pearson, K.1
  • 27
    • 84866645948 scopus 로고    scopus 로고
    • Teaching 3D geometry to deformable part models
    • B. Pepik, M. Stark, P. Gehler, and B. Schiele. Teaching 3D geometry to deformable part models. In CVPR, 2012.
    • (2012) CVPR
    • Pepik, B.1    Stark, M.2    Gehler, P.3    Schiele, B.4
  • 28
    • 84919832734 scopus 로고    scopus 로고
    • Learning to disentangle factors of variation with manifold interaction
    • S. Reed, K. Sohn, Y. Zhang, and H. Lee. Learning to disentangle factors of variation with manifold interaction. In ICML, 2014.
    • (2014) ICML
    • Reed, S.1    Sohn, K.2    Zhang, Y.3    Lee, H.4
  • 29
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290 (5500): 2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 31
    • 0015231889 scopus 로고
    • Mental rotation of three dimensional objects
    • R. Shepard and J. Metzler. Mental rotation of three dimensional objects. Science, 171 (972): 701-3, 1971.
    • (1971) Science , vol.171 , Issue.972 , pp. 701-703
    • Shepard, R.1    Metzler, J.2
  • 32
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR workshop, 2014.
    • (2014) ICLR Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 34
    • 0027422152 scopus 로고
    • Neuronal mechanisms of object recognition
    • K. Tanaka. Neuronal mechanisms of object recognition. Science, 262 (5134): 685-688, 1993.
    • (1993) Science , vol.262 , Issue.5134 , pp. 685-688
    • Tanaka, K.1
  • 35
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • December
    • J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290 (550): 2319-2323, December 2000.
    • (2000) Science , vol.290 , Issue.550 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3
  • 38
    • 84949636429 scopus 로고    scopus 로고
    • 3D ShapeNets: A deep representation for volumetric shape modeling
    • Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets: A deep representation for volumetric shape modeling. In CVPR, 2015.
    • (2015) CVPR
    • Wu, Z.1    Song, S.2    Khosla, A.3    Yu, F.4    Zhang, L.5    Tang, X.6    Xiao, J.7
  • 39
    • 84904687911 scopus 로고    scopus 로고
    • Beyond PASCAL: A benchmark for 3D object detection in the wild
    • Y. Xiang, R. Mottaghi, and S. Savarese. Beyond PASCAL: A benchmark for 3D object detection in the wild. In WACV, 2014.
    • (2014) WACV
    • Xiang, Y.1    Mottaghi, R.2    Savarese, S.3
  • 40
    • 84937508363 scopus 로고    scopus 로고
    • How transferable are features in deep neural networks?
    • J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in deep neural networks? In NIPS, 2014.
    • (2014) NIPS
    • Yosinski, J.1    Clune, J.2    Bengio, Y.3    Lipson, H.4
  • 41
    • 84966582502 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.1    Fergus, R.2
  • 43
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using Places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using Places database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.