메뉴 건너뛰기




Volumn 23, Issue 1, 2017, Pages 91-100

Towards Better Analysis of Deep Convolutional Neural Networks

Author keywords

biclustering; Deep convolutional neural networks; edge bundling; matrix reordering; rectangle packing

Indexed keywords

CONVOLUTION; DIRECTED GRAPHS; IMAGE CLASSIFICATION; NEURONS; PATTERN RECOGNITION; VISUALIZATION;

EID: 84999288596     PISSN: 10772626     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVCG.2016.2598831     Document Type: Article
Times cited : (510)

References (60)
  • 2
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487-499, 1994.
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 77953992150 scopus 로고    scopus 로고
    • Examining multiple potential models in end-user interactive concept learning
    • ACM
    • S. Amershi, J. Fogarty, A. Kapoor, and D. Tan. Examining multiple potential models in end-user interactive concept learning. In CHI, pages 1357-1360. ACM, 2010.
    • (2010) CHI , pp. 1357-1360
    • Amershi, S.1    Fogarty, J.2    Kapoor, A.3    Tan, D.4
  • 5
    • 84879854889 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE PAMI, 35(8):1798-1828, 2013.
    • (2013) IEEE PAMI , vol.35 , Issue.8 , pp. 1798-1828
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 7
    • 33847215211 scopus 로고
    • Stochastic gradient learning in neural networks
    • L. Bottou. Stochastic gradient learning in neural networks. Neuro-Nimes, 91(8), 1991.
    • (1991) Neuro-Nimes , vol.91 , Issue.8
    • Bottou, L.1
  • 8
    • 78149273475 scopus 로고    scopus 로고
    • An information-theoretic framework for visual-ization
    • M. Chen and H. Jaenicke. An information-theoretic framework for visual-ization. IEEE TVCG, 16(6):1206-1215, 2010.
    • (2010) IEEE TVCG , vol.16 , Issue.6 , pp. 1206-1215
    • Chen, M.1    Jaenicke, H.2
  • 11
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. IEEE PAMI, 24(5):603-619, 2002.
    • (2002) IEEE PAMI , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 12
    • 80955143433 scopus 로고    scopus 로고
    • Textflow: Towards better understanding of evolving topics in text
    • W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. J. Gao, H. Qu, and X. Tong. Textflow: Towards better understanding of evolving topics in text. IEEE TVCG, 17(12):2412-2421, 2011.
    • (2011) IEEE TVCG , vol.17 , Issue.12 , pp. 2412-2421
    • Cui, W.1    Liu, S.2    Tan, L.3    Shi, C.4    Song, Y.5    Gao, Z.J.6    Qu, H.7    Tong, X.8
  • 13
    • 84909635750 scopus 로고    scopus 로고
    • How hierarchical topics evolve in large text corpora
    • W. Cui, S. Liu, Z. Wu, and H. Wei. How hierarchical topics evolve in large text corpora. IEEE TVCG, 20(12):2281-2290, 2014.
    • (2014) IEEE TVCG , vol.20 , Issue.12 , pp. 2281-2290
    • Cui, W.1    Liu, S.2    Wu, Z.3    Wei, H.4
  • 14
    • 54949133661 scopus 로고    scopus 로고
    • Geometry-based edge clustering for graph visualization
    • W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge clustering for graph visualization. IEEE TVCG, 14(6):1277-1284, 2008.
    • (2008) IEEE TVCG , vol.14 , Issue.6 , pp. 1277-1284
    • Cui, W.1    Zhou, H.2    Qu, H.3    Wong, P.C.4    Li, X.5
  • 16
    • 77949655248 scopus 로고    scopus 로고
    • Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines
    • N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE TVCG, 16(3):439-454, 2010.
    • (2010) IEEE TVCG , vol.16 , Issue.3 , pp. 439-454
    • Elmqvist, N.1    Fekete, J.-D.2
  • 17
    • 77949524387 scopus 로고    scopus 로고
    • Visualizing higher-layer features of a deep network
    • University of Montreal
    • D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer features of a deep network. Technical report, University of Montreal, 2009.
    • (2009) Technical Report
    • Erhan, D.1    Bengio, Y.2    Courville, A.3    Vincent, P.4
  • 19
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
    • (2014) CVPR , pp. 580-587
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 20
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, pages 249-256, 2010.
    • (2010) AISTATS , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 21
    • 84952683708 scopus 로고    scopus 로고
    • An interactive node-link visualization of convolutional neural networks
    • A. W. Harley. An interactive node-link visualization of convolutional neural networks. In ISVC, pages 867-877, 2015.
    • (2015) ISVC , pp. 867-877
    • Harley, A.W.1
  • 22
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • To appear
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. To appear.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 23
    • 0000460052 scopus 로고
    • A dynamic programming approach to sequencing problems
    • M. Held and R. M. Karp. A dynamic programming approach to sequencing problems. SIAM, 10(1):196-210, 1962.
    • (1962) SIAM , vol.10 , Issue.1 , pp. 196-210
    • Held, M.1    Karp, R.M.2
  • 24
    • 35948954741 scopus 로고    scopus 로고
    • Nodetrix: A hybrid visualiza-tion of social networks
    • N. Henry, J.-D. Fekete, and M. J. McGuffin. Nodetrix: a hybrid visualiza-tion of social networks. IEEE TVCG, 13(6):1302-1309, 2007.
    • (2007) IEEE TVCG , vol.13 , Issue.6 , pp. 1302-1309
    • Henry, N.1    Fekete, J.-D.2    McGuffin, M.J.3
  • 25
    • 68549085159 scopus 로고    scopus 로고
    • Force-directed edge bundling for graph visualization
    • D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph visualization. CGF, 28(3):983-990, 2009.
    • (2009) CGF , vol.28 , Issue.3 , pp. 983-990
    • Holten, D.1    Van Wijk, J.J.2
  • 26
    • 84875502071 scopus 로고    scopus 로고
    • Optimal rectangle packing: An absolute place-ment approach
    • E. Huang and R. E. Korf. Optimal rectangle packing: An absolute place-ment approach. JAIR, 46:47-87, 2012.
    • (2012) JAIR , vol.46 , pp. 47-87
    • Huang, E.1    Korf, R.E.2
  • 27
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, pages 448-456, 2015.
    • (2015) ICML , pp. 448-456
    • Ioffe, S.1    Szegedy, C.2
  • 29
    • 85032279305 scopus 로고
    • Tree-maps: A space-filling approach to the visualization of hierarchical information structures
    • B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to the visualization of hierarchical information structures. In Visualization, pages 284-291, 1991.
    • (1991) Visualization , pp. 284-291
    • Johnson, B.1    Shneiderman, B.2
  • 30
  • 32
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • University of Montreal
    • A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Montreal, 2009.
    • (2009) Technical Report
    • Krizhevsky, A.1
  • 33
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 34
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 35
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 86(11):2278-2324, 1998.
    • (1998) IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 36
    • 84965165777 scopus 로고    scopus 로고
    • Max-margin deep generative models
    • C. Li, J. Zhu, T. Shi, and B. Zhang. Max-margin deep generative models. In NIPS, pages 1828-1836, 2015.
    • (2015) NIPS , pp. 1828-1836
    • Li, C.1    Zhu, J.2    Shi, T.3    Zhang, B.4
  • 37
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • H. Li, T. Jiang, and K. Zhang. Efficient and robust feature extraction by maximum margin criterion. Neural Networks, 17(1):157-165, 2006.
    • (2006) Neural Networks , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 38
    • 84947080779 scopus 로고    scopus 로고
    • An uncertainty-aware approach for exploratory microblog retrieval
    • M. Liu, S. Liu, X. Zhu, Q. Liao, F. Wei, and S. Pan. An uncertainty-aware approach for exploratory microblog retrieval. IEEE TVCG, 22(1):250-259, 2016.
    • (2016) IEEE TVCG , vol.22 , Issue.1 , pp. 250-259
    • Liu, M.1    Liu, S.2    Zhu, X.3    Liao, Q.4    Wei, F.5    Pan, S.6
  • 39
    • 84919877524 scopus 로고    scopus 로고
    • A survey on information visualization: Recent advances and challenges
    • S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization: recent advances and challenges. The Visual Computer, 30(12):1373-1393, 2014.
    • (2014) The Visual Computer , vol.30 , Issue.12 , pp. 1373-1393
    • Liu, S.1    Cui, W.2    Wu, Y.3    Liu, M.4
  • 41
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, pages 5188-5196, 2015.
    • (2015) CVPR , pp. 5188-5196
    • Mahendran, A.1    Vedaldi, A.2
  • 45
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltz-mann machines
    • V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-mann machines. In ICML, pages 807-814, 2010.
    • (2010) ICML , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 46
    • 42749100809 scopus 로고    scopus 로고
    • Fast algorithm for detecting community structure in networks
    • M. E. Newman. Fast algorithm for detecting community structure in networks. Physical review E, 69(6):066133, 2004.
    • (2004) Physical Review E , vol.69 , Issue.6 , pp. 066133
    • Newman, M.E.1
  • 47
    • 84915819887 scopus 로고    scopus 로고
    • An approach to supporting incremental visual data classification
    • J. G. S. Paiva, W. R. Schwartz, H. Pedrini, and R. Minghim. An approach to supporting incremental visual data classification. IEEE TVCG, 21(1):4-17, 2015.
    • (2015) IEEE TVCG , vol.21 , Issue.1 , pp. 4-17
    • Paiva, J.G.S.1    Schwartz, W.R.2    Pedrini, H.3    Minghim, R.4
  • 49
    • 84905220041 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR Workshop, 2013.
    • (2013) ICLR Workshop
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 50
    • 84933585162 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
    • (2014) CoRR , vol.ABS1409.1556
    • Simonyan, K.1    Zisserman, A.2
  • 51
    • 84885410898 scopus 로고    scopus 로고
    • A survey of visual analytics tech-niques and applications: State-of-the-art research and future challenges
    • G. Sun, Y. Wu, R. Liang, and S. Liu. A survey of visual analytics tech-niques and applications: State-of-the-art research and future challenges. JCST, 28(5):852-867, 2013.
    • (2013) JCST , vol.28 , Issue.5 , pp. 852-867
    • Sun, G.1    Wu, Y.2    Liang, R.3    Liu, S.4
  • 52
    • 84910063242 scopus 로고    scopus 로고
    • Evoriver: Visual analysis of topic coopetition on social media
    • G. Sun, Y. Wu, S. Liu, T. Q. Peng, J. J. H. Zhu, and R. Liang. Evoriver: Visual analysis of topic coopetition on social media. IEEE TVCG, 20(12):1753-1762, 2014.
    • (2014) IEEE TVCG , vol.20 , Issue.12 , pp. 1753-1762
    • Sun, G.1    Wu, Y.2    Liu, S.3    Peng, T.Q.4    Zhu, J.J.H.5    Liang, R.6
  • 53
    • 84946593557 scopus 로고    scopus 로고
    • Biset: Semantic edge bundling with biclusters for sensemaking
    • M. Sun, P. Mi, C. North, and N. Ramakrishnan. Biset: Semantic edge bundling with biclusters for sensemaking. IEEE TVCG, 22(1):310-319, 2016.
    • (2016) IEEE TVCG , vol.22 , Issue.1 , pp. 310-319
    • Sun, M.1    Mi, P.2    North, C.3    Ramakrishnan, N.4
  • 54
    • 84999110931 scopus 로고    scopus 로고
    • On the depth of deep neural networks: A theoretical view
    • S. Sun, W. Chen, L. Wang, X. Liu, and T.-Y. Liu. On the depth of deep neural networks: A theoretical view. In AAAI, pages 2066-2072, 2016.
    • (2016) AAAI , pp. 2066-2072
    • Sun, S.1    Chen, W.2    Wang, L.3    Liu, X.4    Liu, T.-Y.5
  • 55
    • 84929164545 scopus 로고    scopus 로고
    • An efficient framework for generating storyline visualizations from streaming data
    • Y. Tanahashi, C. H. Hsueh, and K. L. Ma. An efficient framework for generating storyline visualizations from streaming data. IEEE TVCG, 21(6):730-742, 2015.
    • (2015) IEEE TVCG , vol.21 , Issue.6 , pp. 730-742
    • Tanahashi, Y.1    Hsueh, C.H.2    Ma, K.L.3
  • 56
    • 33749837830 scopus 로고    scopus 로고
    • Opening the black box-data driven visualization of neural networks
    • F. Y. Tzeng and K. L. Ma. Opening the black box-data driven visualization of neural networks. In IEEE VIS, pages 383-390, 2005.
    • (2005) IEEE VIS , pp. 383-390
    • Tzeng, F.Y.1    Ma, K.L.2
  • 57
    • 84946553002 scopus 로고    scopus 로고
    • Egoslider: Visual analysis of egocentric network evolution
    • Y. Wu, N. Pitipornvivat, J. Zhao, S. Yang, G. Huang, and H. Qu. egoslider: Visual analysis of egocentric network evolution. IEEE TVCG, 22(1):260-269, 2016.
    • (2016) IEEE TVCG , vol.22 , Issue.1 , pp. 260-269
    • Wu, Y.1    Pitipornvivat, N.2    Zhao, J.3    Yang, S.4    Huang, G.5    Qu, H.6
  • 59
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833, 2014.
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 60
    • 84856686379 scopus 로고    scopus 로고
    • Adaptive deconvolutional networks for mid and high level feature learning
    • M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, pages 2018-2025, 2011.
    • (2011) ICCV , pp. 2018-2025
    • Zeiler, M.D.1    Taylor, G.W.2    Fergus, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.