-
1
-
-
84971577321
-
-
arXiv preprint arXiv:1603.04467
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.
-
(2016)
Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
2
-
-
0002221136
-
Fast algorithms for mining association rules in large databases
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, pages 487-499, 1994.
-
(1994)
VLDB
, pp. 487-499
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
77953992150
-
Examining multiple potential models in end-user interactive concept learning
-
ACM
-
S. Amershi, J. Fogarty, A. Kapoor, and D. Tan. Examining multiple potential models in end-user interactive concept learning. In CHI, pages 1357-1360. ACM, 2010.
-
(2010)
CHI
, pp. 1357-1360
-
-
Amershi, S.1
Fogarty, J.2
Kapoor, A.3
Tan, D.4
-
5
-
-
84879854889
-
Representation learning: A review and new perspectives
-
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. IEEE PAMI, 35(8):1798-1828, 2013.
-
(2013)
IEEE PAMI
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
6
-
-
84862288320
-
Theano: A CPU and GPU math expression compiler
-
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math expression compiler. In SciPy, 2010.
-
(2010)
SciPy
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
7
-
-
33847215211
-
Stochastic gradient learning in neural networks
-
L. Bottou. Stochastic gradient learning in neural networks. Neuro-Nimes, 91(8), 1991.
-
(1991)
Neuro-Nimes
, vol.91
, Issue.8
-
-
Bottou, L.1
-
8
-
-
78149273475
-
An information-theoretic framework for visual-ization
-
M. Chen and H. Jaenicke. An information-theoretic framework for visual-ization. IEEE TVCG, 16(6):1206-1215, 2010.
-
(2010)
IEEE TVCG
, vol.16
, Issue.6
, pp. 1206-1215
-
-
Chen, M.1
Jaenicke, H.2
-
9
-
-
84904410115
-
Visual multiplexing
-
M. Chen, S. Walton, K. Berger, J. Thiyagalingam, B. Duffy, H. Fang, C. Holloway, and A. E. Trefethen. Visual multiplexing. CGF, 33(3):241-250, 2014.
-
(2014)
CGF
, vol.33
, Issue.3
, pp. 241-250
-
-
Chen, M.1
Walton, S.2
Berger, K.3
Thiyagalingam, J.4
Duffy, B.5
Fang, H.6
Holloway, C.7
Trefethen, A.E.8
-
11
-
-
0036565814
-
Mean shift: A robust approach toward feature space analysis
-
D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature space analysis. IEEE PAMI, 24(5):603-619, 2002.
-
(2002)
IEEE PAMI
, vol.24
, Issue.5
, pp. 603-619
-
-
Comaniciu, D.1
Meer, P.2
-
12
-
-
80955143433
-
Textflow: Towards better understanding of evolving topics in text
-
W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. J. Gao, H. Qu, and X. Tong. Textflow: Towards better understanding of evolving topics in text. IEEE TVCG, 17(12):2412-2421, 2011.
-
(2011)
IEEE TVCG
, vol.17
, Issue.12
, pp. 2412-2421
-
-
Cui, W.1
Liu, S.2
Tan, L.3
Shi, C.4
Song, Y.5
Gao, Z.J.6
Qu, H.7
Tong, X.8
-
13
-
-
84909635750
-
How hierarchical topics evolve in large text corpora
-
W. Cui, S. Liu, Z. Wu, and H. Wei. How hierarchical topics evolve in large text corpora. IEEE TVCG, 20(12):2281-2290, 2014.
-
(2014)
IEEE TVCG
, vol.20
, Issue.12
, pp. 2281-2290
-
-
Cui, W.1
Liu, S.2
Wu, Z.3
Wei, H.4
-
14
-
-
54949133661
-
Geometry-based edge clustering for graph visualization
-
W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li. Geometry-based edge clustering for graph visualization. IEEE TVCG, 14(6):1277-1284, 2008.
-
(2008)
IEEE TVCG
, vol.14
, Issue.6
, pp. 1277-1284
-
-
Cui, W.1
Zhou, H.2
Qu, H.3
Wong, P.C.4
Li, X.5
-
16
-
-
77949655248
-
Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines
-
N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE TVCG, 16(3):439-454, 2010.
-
(2010)
IEEE TVCG
, vol.16
, Issue.3
, pp. 439-454
-
-
Elmqvist, N.1
Fekete, J.-D.2
-
18
-
-
84926052311
-
Themedelta: Dynamic segmentations over temporal topic models
-
S. Gad, W. Javed, S. Ghani, N. Elmqvist, T. Ewing, K. N. Hampton, and N. Ramakrishnan. Themedelta: Dynamic segmentations over temporal topic models. IEEE TVCG, 21(5):672-685, 2015.
-
(2015)
IEEE TVCG
, vol.21
, Issue.5
, pp. 672-685
-
-
Gad, S.1
Javed, W.2
Ghani, S.3
Elmqvist, N.4
Ewing, T.5
Hampton, K.N.6
Ramakrishnan, N.7
-
19
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, pages 580-587, 2014.
-
(2014)
CVPR
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
20
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, pages 249-256, 2010.
-
(2010)
AISTATS
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
21
-
-
84952683708
-
An interactive node-link visualization of convolutional neural networks
-
A. W. Harley. An interactive node-link visualization of convolutional neural networks. In ISVC, pages 867-877, 2015.
-
(2015)
ISVC
, pp. 867-877
-
-
Harley, A.W.1
-
22
-
-
84986274465
-
Deep residual learning for image recognition
-
To appear
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. To appear.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
23
-
-
0000460052
-
A dynamic programming approach to sequencing problems
-
M. Held and R. M. Karp. A dynamic programming approach to sequencing problems. SIAM, 10(1):196-210, 1962.
-
(1962)
SIAM
, vol.10
, Issue.1
, pp. 196-210
-
-
Held, M.1
Karp, R.M.2
-
24
-
-
35948954741
-
Nodetrix: A hybrid visualiza-tion of social networks
-
N. Henry, J.-D. Fekete, and M. J. McGuffin. Nodetrix: a hybrid visualiza-tion of social networks. IEEE TVCG, 13(6):1302-1309, 2007.
-
(2007)
IEEE TVCG
, vol.13
, Issue.6
, pp. 1302-1309
-
-
Henry, N.1
Fekete, J.-D.2
McGuffin, M.J.3
-
25
-
-
68549085159
-
Force-directed edge bundling for graph visualization
-
D. Holten and J. J. Van Wijk. Force-directed edge bundling for graph visualization. CGF, 28(3):983-990, 2009.
-
(2009)
CGF
, vol.28
, Issue.3
, pp. 983-990
-
-
Holten, D.1
Van Wijk, J.J.2
-
26
-
-
84875502071
-
Optimal rectangle packing: An absolute place-ment approach
-
E. Huang and R. E. Korf. Optimal rectangle packing: An absolute place-ment approach. JAIR, 46:47-87, 2012.
-
(2012)
JAIR
, vol.46
, pp. 47-87
-
-
Huang, E.1
Korf, R.E.2
-
27
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, pages 448-456, 2015.
-
(2015)
ICML
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
28
-
-
84913555165
-
-
arXiv preprint arXiv:1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
29
-
-
85032279305
-
Tree-maps: A space-filling approach to the visualization of hierarchical information structures
-
B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to the visualization of hierarchical information structures. In Visualization, pages 284-291, 1991.
-
(1991)
Visualization
, pp. 284-291
-
-
Johnson, B.1
Shneiderman, B.2
-
30
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In CVPR, pages 1725-1732, 2014.
-
(2014)
CVPR
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
31
-
-
77956059198
-
Optimal rectangle packing
-
R. E. Korf, M. D. Moffitt, and M. E. Pollack. Optimal rectangle packing. Annals of Operations Research, 179(1):261-295, 2010.
-
(2010)
Annals of Operations Research
, vol.179
, Issue.1
, pp. 261-295
-
-
Korf, R.E.1
Moffitt, M.D.2
Pollack, M.E.3
-
32
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
University of Montreal
-
A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Montreal, 2009.
-
(2009)
Technical Report
-
-
Krizhevsky, A.1
-
33
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
34
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
35
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. IEEE, 86(11):2278-2324, 1998.
-
(1998)
IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
36
-
-
84965165777
-
Max-margin deep generative models
-
C. Li, J. Zhu, T. Shi, and B. Zhang. Max-margin deep generative models. In NIPS, pages 1828-1836, 2015.
-
(2015)
NIPS
, pp. 1828-1836
-
-
Li, C.1
Zhu, J.2
Shi, T.3
Zhang, B.4
-
37
-
-
33144458972
-
Efficient and robust feature extraction by maximum margin criterion
-
H. Li, T. Jiang, and K. Zhang. Efficient and robust feature extraction by maximum margin criterion. Neural Networks, 17(1):157-165, 2006.
-
(2006)
Neural Networks
, vol.17
, Issue.1
, pp. 157-165
-
-
Li, H.1
Jiang, T.2
Zhang, K.3
-
38
-
-
84947080779
-
An uncertainty-aware approach for exploratory microblog retrieval
-
M. Liu, S. Liu, X. Zhu, Q. Liao, F. Wei, and S. Pan. An uncertainty-aware approach for exploratory microblog retrieval. IEEE TVCG, 22(1):250-259, 2016.
-
(2016)
IEEE TVCG
, vol.22
, Issue.1
, pp. 250-259
-
-
Liu, M.1
Liu, S.2
Zhu, X.3
Liao, Q.4
Wei, F.5
Pan, S.6
-
39
-
-
84919877524
-
A survey on information visualization: Recent advances and challenges
-
S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization: recent advances and challenges. The Visual Computer, 30(12):1373-1393, 2014.
-
(2014)
The Visual Computer
, vol.30
, Issue.12
, pp. 1373-1393
-
-
Liu, S.1
Cui, W.2
Wu, Y.3
Liu, M.4
-
40
-
-
84999110640
-
Online visual analytics of text streams
-
S. Liu, J. Yin, X.Wang,W. Cui, K. Cao, and J. Pei. Online visual analytics of text streams. To appear in IEEE TVCG, 2015.
-
(2015)
To Appear in IEEE TVCG
-
-
Liu, S.1
Yin, J.2
Wang, X.3
Cui, W.4
Cao, K.5
Pei, J.6
-
41
-
-
84959213675
-
Understanding deep image representations by inverting them
-
A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, pages 5188-5196, 2015.
-
(2015)
CVPR
, pp. 5188-5196
-
-
Mahendran, A.1
Vedaldi, A.2
-
43
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.
-
(2015)
Nature
, vol.518
, Issue.7540
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
Rusu, A.A.4
Veness, J.5
Bellemare, M.G.6
Graves, A.7
Riedmiller, M.8
Fidjeland, A.K.9
Ostrovski, G.10
-
45
-
-
77956509090
-
Rectified linear units improve restricted boltz-mann machines
-
V. Nair and G. E. Hinton. Rectified linear units improve restricted boltz-mann machines. In ICML, pages 807-814, 2010.
-
(2010)
ICML
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
46
-
-
42749100809
-
Fast algorithm for detecting community structure in networks
-
M. E. Newman. Fast algorithm for detecting community structure in networks. Physical review E, 69(6):066133, 2004.
-
(2004)
Physical Review E
, vol.69
, Issue.6
, pp. 066133
-
-
Newman, M.E.1
-
47
-
-
84915819887
-
An approach to supporting incremental visual data classification
-
J. G. S. Paiva, W. R. Schwartz, H. Pedrini, and R. Minghim. An approach to supporting incremental visual data classification. IEEE TVCG, 21(1):4-17, 2015.
-
(2015)
IEEE TVCG
, vol.21
, Issue.1
, pp. 4-17
-
-
Paiva, J.G.S.1
Schwartz, W.R.2
Pedrini, H.3
Minghim, R.4
-
48
-
-
84963949906
-
Mastering the game of go with deep neural networks and tree search
-
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.
-
(2016)
Nature
, vol.529
, Issue.7587
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershelvam, V.9
Lanctot, M.10
-
49
-
-
84905220041
-
Deep inside convolutional networks: Visualising image classification models and saliency maps
-
K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR Workshop, 2013.
-
(2013)
ICLR Workshop
-
-
Simonyan, K.1
Vedaldi, A.2
Zisserman, A.3
-
50
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.
-
(2014)
CoRR
, vol.ABS1409.1556
-
-
Simonyan, K.1
Zisserman, A.2
-
51
-
-
84885410898
-
A survey of visual analytics tech-niques and applications: State-of-the-art research and future challenges
-
G. Sun, Y. Wu, R. Liang, and S. Liu. A survey of visual analytics tech-niques and applications: State-of-the-art research and future challenges. JCST, 28(5):852-867, 2013.
-
(2013)
JCST
, vol.28
, Issue.5
, pp. 852-867
-
-
Sun, G.1
Wu, Y.2
Liang, R.3
Liu, S.4
-
52
-
-
84910063242
-
Evoriver: Visual analysis of topic coopetition on social media
-
G. Sun, Y. Wu, S. Liu, T. Q. Peng, J. J. H. Zhu, and R. Liang. Evoriver: Visual analysis of topic coopetition on social media. IEEE TVCG, 20(12):1753-1762, 2014.
-
(2014)
IEEE TVCG
, vol.20
, Issue.12
, pp. 1753-1762
-
-
Sun, G.1
Wu, Y.2
Liu, S.3
Peng, T.Q.4
Zhu, J.J.H.5
Liang, R.6
-
53
-
-
84946593557
-
Biset: Semantic edge bundling with biclusters for sensemaking
-
M. Sun, P. Mi, C. North, and N. Ramakrishnan. Biset: Semantic edge bundling with biclusters for sensemaking. IEEE TVCG, 22(1):310-319, 2016.
-
(2016)
IEEE TVCG
, vol.22
, Issue.1
, pp. 310-319
-
-
Sun, M.1
Mi, P.2
North, C.3
Ramakrishnan, N.4
-
54
-
-
84999110931
-
On the depth of deep neural networks: A theoretical view
-
S. Sun, W. Chen, L. Wang, X. Liu, and T.-Y. Liu. On the depth of deep neural networks: A theoretical view. In AAAI, pages 2066-2072, 2016.
-
(2016)
AAAI
, pp. 2066-2072
-
-
Sun, S.1
Chen, W.2
Wang, L.3
Liu, X.4
Liu, T.-Y.5
-
55
-
-
84929164545
-
An efficient framework for generating storyline visualizations from streaming data
-
Y. Tanahashi, C. H. Hsueh, and K. L. Ma. An efficient framework for generating storyline visualizations from streaming data. IEEE TVCG, 21(6):730-742, 2015.
-
(2015)
IEEE TVCG
, vol.21
, Issue.6
, pp. 730-742
-
-
Tanahashi, Y.1
Hsueh, C.H.2
Ma, K.L.3
-
56
-
-
33749837830
-
Opening the black box-data driven visualization of neural networks
-
F. Y. Tzeng and K. L. Ma. Opening the black box-data driven visualization of neural networks. In IEEE VIS, pages 383-390, 2005.
-
(2005)
IEEE VIS
, pp. 383-390
-
-
Tzeng, F.Y.1
Ma, K.L.2
-
57
-
-
84946553002
-
Egoslider: Visual analysis of egocentric network evolution
-
Y. Wu, N. Pitipornvivat, J. Zhao, S. Yang, G. Huang, and H. Qu. egoslider: Visual analysis of egocentric network evolution. IEEE TVCG, 22(1):260-269, 2016.
-
(2016)
IEEE TVCG
, vol.22
, Issue.1
, pp. 260-269
-
-
Wu, Y.1
Pitipornvivat, N.2
Zhao, J.3
Yang, S.4
Huang, G.5
Qu, H.6
-
58
-
-
84959091021
-
Understanding neural networks through deep visualization
-
J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks through deep visualization. In ICML Workshop on Deep Learning, 2015.
-
(2015)
ICML Workshop on Deep Learning
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
-
59
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833, 2014.
-
(2014)
ECCV
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
60
-
-
84856686379
-
Adaptive deconvolutional networks for mid and high level feature learning
-
M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks for mid and high level feature learning. In ICCV, pages 2018-2025, 2011.
-
(2011)
ICCV
, pp. 2018-2025
-
-
Zeiler, M.D.1
Taylor, G.W.2
Fergus, R.3
|