-
1
-
-
84867638391
-
Reinventing the contingency wheel: Scalable visual analytics of large categorical data
-
B. Alsallakh, W. Aigner, S. Miksch, and M. E. Gröller. Reinventing the contingency wheel: Scalable visual analytics of large categorical data. Visualization and Computer Graphics, IEEE Transactions on, 18(12):2849-2858, 2012.
-
(2012)
Visualization and Computer Graphics, IEEE Transactions on
, vol.18
, Issue.12
, pp. 2849-2858
-
-
Alsallakh, B.1
Aigner, W.2
Miksch, S.3
Gröller, M.E.4
-
2
-
-
84886712253
-
Radial sets: Interactive visual analysis of large overlapping sets
-
B. Alsallakh, W. Aigner, S. Miksch, and H. Hauser. Radial sets: Interactive visual analysis of large overlapping sets. Visualization and Computer Graphics, IEEE Transactions on, 19(12):2496-2505, 2013.
-
(2013)
Visualization and Computer Graphics, IEEE Transactions on
, vol.19
, Issue.12
, pp. 2496-2505
-
-
Alsallakh, B.1
Aigner, W.2
Miksch, S.3
Hauser, H.4
-
4
-
-
0000064536
-
Visual classification: An interactive approach to decision tree construction
-
ACM
-
M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual classification: an interactive approach to decision tree construction. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 392-396. ACM, 1999.
-
(1999)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 392-396
-
-
Ankerst, M.1
Elsen, C.2
Ester, M.3
Kriegel, H.-P.4
-
5
-
-
84886567160
-
-
University of California, Irvine, School of Information and Computer Sciences (accessed: March 2014)
-
K. Bache and M. Lichman. UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml (accessed: March 2014).
-
UCI Machine Learning Repository
-
-
Bache, K.1
Lichman, M.2
-
6
-
-
84875842499
-
Assisted descriptor selection based on visual comparative data analysis
-
S. Bremm, T. von Landesberger, J. Bernard, and T. Schreck. Assisted descriptor selection based on visual comparative data analysis. Computer Graphics Forum, 30(3):891-900, 2011.
-
(2011)
Computer Graphics Forum
, vol.30
, Issue.3
, pp. 891-900
-
-
Bremm, S.1
Von Landesberger, T.2
Bernard, J.3
Schreck, T.4
-
7
-
-
84872960946
-
Dis-function: Learning distance functions interactively
-
E. Brown, J. Liu, C. Brodley, and R. Chang. Dis-function: Learning distance functions interactively. In IEEE Conference on Visual Analytics Science and Technology (VAST), pages 83-92, 2012.
-
(2012)
IEEE Conference on Visual Analytics Science and Technology (VAST)
, pp. 83-92
-
-
Brown, E.1
Liu, J.2
Brodley, C.3
Chang, R.4
-
8
-
-
50149121547
-
Visual methods for examining SVM classifiers
-
Springer
-
D. Caragea, D. Cook, H. Wickham, and V. Honavar. Visual methods for examining SVM classifiers. In Visual Data Mining, pages 136-153. Springer, 2008.
-
(2008)
Visual Data Mining
, pp. 136-153
-
-
Caragea, D.1
Cook, D.2
Wickham, H.3
Honavar, V.4
-
9
-
-
78650936017
-
iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction
-
J. Choo, H. Lee, J. Kihm, and H. Park. iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction. In IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 27-34, 2010.
-
(2010)
IEEE Symposium on Visual Analytics Science and Technology (VAST)
, pp. 27-34
-
-
Choo, J.1
Lee, H.2
Kihm, J.3
Park, H.4
-
10
-
-
33747093349
-
Incorporating domain knowledge and spatial relationships into land cover classifications: A rule-based approach
-
A. E. Daniels. Incorporating domain knowledge and spatial relationships into land cover classifications: a rule-based approach. International Journal of Remote Sensing, 27(14):2949-2975, 2006.
-
(2006)
International Journal of Remote Sensing
, vol.27
, Issue.14
, pp. 2949-2975
-
-
Daniels, A.E.1
-
12
-
-
33748991193
-
Cost curves: An improved method for visualizing classifier performance
-
C. Drummond and R. Holte. Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1):95-130, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 95-130
-
-
Drummond, C.1
Holte, R.2
-
13
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):861-874, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
14
-
-
79956301925
-
A novel scalable multi-class ROC for effective visualization and computation
-
Springer
-
M. R. Hassan, K. Ramamohanarao, C. Karmakar, M. M. Hossain, and J. Bailey. A novel scalable multi-class ROC for effective visualization and computation. In Advances in Knowledge Discovery and Data Mining, pages 107-120. Springer, 2010.
-
(2010)
Advances in Knowledge Discovery and Data Mining
, pp. 107-120
-
-
Hassan, M.R.1
Ramamohanarao, K.2
Karmakar, C.3
Hossain, M.M.4
Bailey, J.5
-
15
-
-
84867642215
-
Visual classifier training for text document retrieval
-
F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual classifier training for text document retrieval. Visualization and Computer Graphics, IEEE Trans. on, 18(12):2839-2848, 2012.
-
(2012)
Visualization and Computer Graphics, IEEE Trans. On
, vol.18
, Issue.12
, pp. 2839-2848
-
-
Heimerl, F.1
Koch, S.2
Bosch, H.3
Ertl, T.4
-
16
-
-
84872965316
-
Inter-active learning of ad-hoc classifiers for video visual analytics
-
B. Hoferlin, R. Netzel, M. Hoferlin, D. Weiskopf, and G. Heidemann. Inter-active learning of ad-hoc classifiers for video visual analytics. In IEEE Conference on Visual Analytics Science and Technology (VAST), pages 23-32, 2012.
-
(2012)
IEEE Conference on Visual Analytics Science and Technology (VAST)
, pp. 23-32
-
-
Hoferlin, B.1
Netzel, R.2
Hoferlin, M.3
Weiskopf, D.4
Heidemann, G.5
-
17
-
-
34548617417
-
Parametric embedding for class visualization
-
T. Iwata, K. Saito, N. Ueda, S. Stromsten, T. L. Griffiths, and J. B. Tenenbaum. Parametric embedding for class visualization. Neural Computation, 19(9):2536-2556, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.9
, pp. 2536-2556
-
-
Iwata, T.1
Saito, K.2
Ueda, N.3
Stromsten, S.4
Griffiths, T.L.5
Tenenbaum, J.B.6
-
18
-
-
77953996903
-
Interactive optimization for steering machine classification
-
ACM
-
A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive optimization for steering machine classification. In Proceedings of the International Conference on Human Factors in Computing Systems (CHI), pages 1343-1352. ACM, 2010.
-
(2010)
Proceedings of the International Conference on Human Factors in Computing Systems (CHI)
, pp. 1343-1352
-
-
Kapoor, A.1
Lee, B.2
Tan, D.3
Horvitz, E.4
-
19
-
-
85088135158
-
Visual exploration of feature-class matrices for classification problems
-
The Eurographics Association
-
W. Kienreich and C. Seifert. Visual exploration of feature-class matrices for classification problems. In International Workshop on Visual Analytics (EuroVA), pages 37-41. The Eurographics Association, 2012.
-
(2012)
International Workshop on Visual Analytics (EuroVA)
, pp. 37-41
-
-
Kienreich, W.1
Seifert, C.2
-
20
-
-
1942452386
-
Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves
-
N. Lachiche and P. Flach. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In International Conference on Machine Learning (ICML), volume 20, pages 416-423, 2003.
-
(2003)
International Conference on Machine Learning (ICML)
, vol.20
, pp. 416-423
-
-
Lachiche, N.1
Flach, P.2
-
21
-
-
0029373189
-
Optimal combinations of pattern classifiers
-
L. Lam and C. Y. Suen. Optimal combinations of pattern classifiers. Pattern Recognition Letters, 16(9):945-954, 1995.
-
(1995)
Pattern Recognition Letters
, vol.16
, Issue.9
, pp. 945-954
-
-
Lam, L.1
Suen, C.Y.2
-
23
-
-
84855769219
-
Guiding feature subset selection with an interactive visualization
-
T. May, A. Bannach, J. Davey, T. Ruppert, and J. Kohlhammer. Guiding feature subset selection with an interactive visualization. In IEEE Conference on Visual Analytics Science and Technology (VAST), pages 111-120, 2011.
-
(2011)
IEEE Conference on Visual Analytics Science and Technology (VAST)
, pp. 111-120
-
-
May, T.1
Bannach, A.2
Davey, J.3
Ruppert, T.4
Kohlhammer, J.5
-
24
-
-
33749558210
-
YALE: Rapid prototyping for complex data mining tasks
-
ACM
-
I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE: Rapid prototyping for complex data mining tasks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 935-940. ACM, 2006.
-
(2006)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 935-940
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
Scholz, M.4
Euler, T.5
-
27
-
-
84888212640
-
Visualization of cluster structure and separation in multivariate mixed data: A case study of diversity faultlines in work teams
-
T. Pham, R. Metoyer, K. Bezrukova, and C. Spell. Visualization of cluster structure and separation in multivariate mixed data: A case study of diversity faultlines in work teams. Computers & Graphics, 38:117-130, 2014.
-
(2014)
Computers & Graphics
, vol.38
, pp. 117-130
-
-
Pham, T.1
Metoyer, R.2
Bezrukova, K.3
Spell, C.4
-
28
-
-
84864758525
-
Evaluation: From precision, recall and f-measure to roc, informedness, markedness & correlation
-
D. M. Powers. Evaluation: from precision, recall and f-measure to roc, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1):37-63, 2011.
-
(2011)
Journal of Machine Learning Technologies
, vol.2
, Issue.1
, pp. 37-63
-
-
Powers, D.M.1
-
30
-
-
84875863474
-
A taxonomy of visual cluster separation factors
-
Wiley Online Library
-
M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A taxonomy of visual cluster separation factors. In Computer Graphics Forum, volume 31, pages 1335-1344. Wiley Online Library, 2012.
-
(2012)
Computer Graphics Forum
, vol.31
, pp. 1335-1344
-
-
Sedlmair, M.1
Tatu, A.2
Munzner, T.3
Tory, M.4
-
33
-
-
68949137209
-
Active learning literature survey
-
University of Wisconsin-Madison
-
B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009.
-
(2009)
Computer Sciences Technical Report
-
-
Settles, B.1
-
34
-
-
84909625662
-
Pattern recognition engineering
-
F. Shafait, M. Reif, C. Kofler, and T. M. Breuel. Pattern recognition engineering. In RapidMiner Community Meeting and Conference, volume 9, 2010.
-
(2010)
RapidMiner Community Meeting and Conference
, vol.9
-
-
Shafait, F.1
Reif, M.2
Kofler, C.3
Breuel, T.M.4
-
35
-
-
84879707297
-
EnsembleMatrix: Interactive visualization to support machine learning with multiple classifiers
-
ACM
-
J. Talbot, B. Lee, A. Kapoor, and D. S. Tan. EnsembleMatrix: Interactive visualization to support machine learning with multiple classifiers. In Proceedings of the International Conference on Human Factors in Computing Systems (CHI), pages 1283-1292. ACM, 2009.
-
(2009)
Proceedings of the International Conference on Human Factors in Computing Systems (CHI)
, pp. 1283-1292
-
-
Talbot, J.1
Lee, B.2
Kapoor, A.3
Tan, D.S.4
-
36
-
-
72849140660
-
Combining automated analysis and visualization techniques for effective exploration of high-dimensional data
-
IEEE
-
A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel, M. Magnor, and D. Keim. Combining automated analysis and visualization techniques for effective exploration of high-dimensional data. In IEEE Symposium on Visual Analytics Science and Technology (VAST)., pages 59-66. IEEE, 2009.
-
(2009)
IEEE Symposium on Visual Analytics Science and Technology (VAST)
, pp. 59-66
-
-
Tatu, A.1
Albuquerque, G.2
Eisemann, M.3
Schneidewind, J.4
Theisel, H.5
Magnor, M.6
Keim, D.7
-
37
-
-
0033713738
-
Combining multiple classifiers by averaging or by multiplying?
-
D. M. Tax, M. Van Breukelen, R. P. Duin, and J. Kittler. Combining multiple classifiers by averaging or by multiplying? Pattern recognition, 33(9):1475-1485, 2000.
-
(2000)
Pattern Recognition
, vol.33
, Issue.9
, pp. 1475-1485
-
-
Tax, D.M.1
Van Breukelen, M.2
Duin, R.P.3
Kittler, J.4
-
38
-
-
70349820456
-
PaintingClass: Interactive construction, visualization and exploration of decision trees
-
New York, NY, USA, ACM
-
S. T. Teoh and K.-L. Ma. PaintingClass: interactive construction, visualization and exploration of decision trees. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages 667-672, New York, NY, USA, 2003. ACM.
-
(2003)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 667-672
-
-
Teoh, S.T.1
Ma, K.-L.2
-
39
-
-
36649017897
-
Improving pixel-based vhr land-cover classifications of urban areas with post-classification techniques
-
T. Van de Voorde, W. De Genst, and F. Canters. Improving pixel-based vhr land-cover classifications of urban areas with post-classification techniques. Photogrammetric Engineering and Remote Sensing, 73(9):1017, 2007.
-
(2007)
Photogrammetric Engineering and Remote Sensing
, vol.73
, Issue.9
, pp. 1017
-
-
Van De Voorde, T.1
De Genst, W.2
Canters, F.3
-
41
-
-
0035470418
-
Interactive machine learning: Letting users build classifiers
-
M. Ware, E. Frank, G. Holmes, M. Hall, and I. Witten. Interactive machine learning: letting users build classifiers. Intl. Journal of Human-Computer Studies, 55(3):281-292, 2001.
-
(2001)
Intl. Journal of Human-Computer Studies
, vol.55
, Issue.3
, pp. 281-292
-
-
Ware, M.1
Frank, E.2
Holmes, G.3
Hall, M.4
Witten, I.5
-
42
-
-
0026860706
-
Methods of combining multiple classifiers and their applications to handwriting recognition
-
L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. Systems, Man and Cybernetics, IEEE Transactions on, 22(3):418-435, 1992.
-
(1992)
Systems, Man and Cybernetics, IEEE Transactions on
, vol.22
, Issue.3
, pp. 418-435
-
-
Xu, L.1
Krzyzak, A.2
Suen, C.Y.3
-
43
-
-
68749087480
-
Opening the black box of feature extraction: Incorporating visualization into high-dimensional data mining processes
-
J. Zhang and L. Gruenwald. Opening the black box of feature extraction: Incorporating visualization into high-dimensional data mining processes. In IEEE International Conference on Data Mining (ICDM), pages 1188-1192, 2006.
-
(2006)
IEEE International Conference on Data Mining (ICDM)
, pp. 1188-1192
-
-
Zhang, J.1
Gruenwald, L.2
|