메뉴 건너뛰기




Volumn 20, Issue 12, 2014, Pages 1703-1712

Visual methods for analyzing probabilistic classification data

Author keywords

Confusion analysis; Feature evaluation and selection; Probabilistic classification; Visual inspection

Indexed keywords

CONFUSION ANALYSIS; FEATURE EVALUATION AND SELECTION; PROBABILISTIC CLASSIFICATION; VISUAL INSPECTION;

EID: 84909592940     PISSN: 10772626     EISSN: None     Source Type: Journal    
DOI: 10.1109/TVCG.2014.2346660     Document Type: Article
Times cited : (127)

References (43)
  • 5
    • 84886567160 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences (accessed: March 2014)
    • K. Bache and M. Lichman. UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://archive.ics.uci.edu/ml (accessed: March 2014).
    • UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 6
    • 84875842499 scopus 로고    scopus 로고
    • Assisted descriptor selection based on visual comparative data analysis
    • S. Bremm, T. von Landesberger, J. Bernard, and T. Schreck. Assisted descriptor selection based on visual comparative data analysis. Computer Graphics Forum, 30(3):891-900, 2011.
    • (2011) Computer Graphics Forum , vol.30 , Issue.3 , pp. 891-900
    • Bremm, S.1    Von Landesberger, T.2    Bernard, J.3    Schreck, T.4
  • 8
    • 50149121547 scopus 로고    scopus 로고
    • Visual methods for examining SVM classifiers
    • Springer
    • D. Caragea, D. Cook, H. Wickham, and V. Honavar. Visual methods for examining SVM classifiers. In Visual Data Mining, pages 136-153. Springer, 2008.
    • (2008) Visual Data Mining , pp. 136-153
    • Caragea, D.1    Cook, D.2    Wickham, H.3    Honavar, V.4
  • 9
    • 78650936017 scopus 로고    scopus 로고
    • iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction
    • J. Choo, H. Lee, J. Kihm, and H. Park. iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction. In IEEE Symposium on Visual Analytics Science and Technology (VAST), pages 27-34, 2010.
    • (2010) IEEE Symposium on Visual Analytics Science and Technology (VAST) , pp. 27-34
    • Choo, J.1    Lee, H.2    Kihm, J.3    Park, H.4
  • 10
    • 33747093349 scopus 로고    scopus 로고
    • Incorporating domain knowledge and spatial relationships into land cover classifications: A rule-based approach
    • A. E. Daniels. Incorporating domain knowledge and spatial relationships into land cover classifications: a rule-based approach. International Journal of Remote Sensing, 27(14):2949-2975, 2006.
    • (2006) International Journal of Remote Sensing , vol.27 , Issue.14 , pp. 2949-2975
    • Daniels, A.E.1
  • 12
    • 33748991193 scopus 로고    scopus 로고
    • Cost curves: An improved method for visualizing classifier performance
    • C. Drummond and R. Holte. Cost curves: An improved method for visualizing classifier performance. Machine Learning, 65(1):95-130, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 95-130
    • Drummond, C.1    Holte, R.2
  • 13
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett. An introduction to ROC analysis. Pattern recognition letters, 27(8):861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 19
    • 85088135158 scopus 로고    scopus 로고
    • Visual exploration of feature-class matrices for classification problems
    • The Eurographics Association
    • W. Kienreich and C. Seifert. Visual exploration of feature-class matrices for classification problems. In International Workshop on Visual Analytics (EuroVA), pages 37-41. The Eurographics Association, 2012.
    • (2012) International Workshop on Visual Analytics (EuroVA) , pp. 37-41
    • Kienreich, W.1    Seifert, C.2
  • 20
    • 1942452386 scopus 로고    scopus 로고
    • Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves
    • N. Lachiche and P. Flach. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In International Conference on Machine Learning (ICML), volume 20, pages 416-423, 2003.
    • (2003) International Conference on Machine Learning (ICML) , vol.20 , pp. 416-423
    • Lachiche, N.1    Flach, P.2
  • 21
    • 0029373189 scopus 로고
    • Optimal combinations of pattern classifiers
    • L. Lam and C. Y. Suen. Optimal combinations of pattern classifiers. Pattern Recognition Letters, 16(9):945-954, 1995.
    • (1995) Pattern Recognition Letters , vol.16 , Issue.9 , pp. 945-954
    • Lam, L.1    Suen, C.Y.2
  • 27
    • 84888212640 scopus 로고    scopus 로고
    • Visualization of cluster structure and separation in multivariate mixed data: A case study of diversity faultlines in work teams
    • T. Pham, R. Metoyer, K. Bezrukova, and C. Spell. Visualization of cluster structure and separation in multivariate mixed data: A case study of diversity faultlines in work teams. Computers & Graphics, 38:117-130, 2014.
    • (2014) Computers & Graphics , vol.38 , pp. 117-130
    • Pham, T.1    Metoyer, R.2    Bezrukova, K.3    Spell, C.4
  • 28
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and f-measure to roc, informedness, markedness & correlation
    • D. M. Powers. Evaluation: from precision, recall and f-measure to roc, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2(1):37-63, 2011.
    • (2011) Journal of Machine Learning Technologies , vol.2 , Issue.1 , pp. 37-63
    • Powers, D.M.1
  • 30
    • 84875863474 scopus 로고    scopus 로고
    • A taxonomy of visual cluster separation factors
    • Wiley Online Library
    • M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A taxonomy of visual cluster separation factors. In Computer Graphics Forum, volume 31, pages 1335-1344. Wiley Online Library, 2012.
    • (2012) Computer Graphics Forum , vol.31 , pp. 1335-1344
    • Sedlmair, M.1    Tatu, A.2    Munzner, T.3    Tory, M.4
  • 33
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • University of Wisconsin-Madison
    • B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009.
    • (2009) Computer Sciences Technical Report
    • Settles, B.1
  • 37
    • 0033713738 scopus 로고    scopus 로고
    • Combining multiple classifiers by averaging or by multiplying?
    • D. M. Tax, M. Van Breukelen, R. P. Duin, and J. Kittler. Combining multiple classifiers by averaging or by multiplying? Pattern recognition, 33(9):1475-1485, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1475-1485
    • Tax, D.M.1    Van Breukelen, M.2    Duin, R.P.3    Kittler, J.4
  • 39
    • 36649017897 scopus 로고    scopus 로고
    • Improving pixel-based vhr land-cover classifications of urban areas with post-classification techniques
    • T. Van de Voorde, W. De Genst, and F. Canters. Improving pixel-based vhr land-cover classifications of urban areas with post-classification techniques. Photogrammetric Engineering and Remote Sensing, 73(9):1017, 2007.
    • (2007) Photogrammetric Engineering and Remote Sensing , vol.73 , Issue.9 , pp. 1017
    • Van De Voorde, T.1    De Genst, W.2    Canters, F.3
  • 42
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, and C. Y. Suen. Methods of combining multiple classifiers and their applications to handwriting recognition. Systems, Man and Cybernetics, IEEE Transactions on, 22(3):418-435, 1992.
    • (1992) Systems, Man and Cybernetics, IEEE Transactions on , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 43
    • 68749087480 scopus 로고    scopus 로고
    • Opening the black box of feature extraction: Incorporating visualization into high-dimensional data mining processes
    • J. Zhang and L. Gruenwald. Opening the black box of feature extraction: Incorporating visualization into high-dimensional data mining processes. In IEEE International Conference on Data Mining (ICDM), pages 1188-1192, 2006.
    • (2006) IEEE International Conference on Data Mining (ICDM) , pp. 1188-1192
    • Zhang, J.1    Gruenwald, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.