-
1
-
-
84933564181
-
A semiautomated probabilistic framework for tree-cover delineation from 1-m naip imagery using a high-performance computing architecture
-
Oct
-
S. Basu, S. Ganguly, R. Nemani, S. Mukhopadhyay, G. Zhang, C. Milesi, A. Michaelis, P. Votava, R. Dubayah, L. Duncanson, B. Cook, Y. Yu, S. Saatchi, R. DiBiano, M. Karki, E. Boyda, U. Kumar, and S. Li. A semiautomated probabilistic framework for tree-cover delineation from 1-m naip imagery using a high-performance computing architecture. Geoscience and Remote Sensing, IEEE Transactions on, 53(10):5690-5708, Oct 2015.
-
(2015)
Geoscience and Remote Sensing IEEE Transactions on
, vol.53
, Issue.10
, pp. 5690-5708
-
-
Basu, S.1
Ganguly, S.2
Nemani, R.3
Mukhopadhyay, S.4
Zhang, G.5
Milesi, C.6
Michaelis, A.7
Votava, P.8
Dubayah, R.9
Duncanson, L.10
Cook, B.11
Yu, Y.12
Saatchi, S.13
DiBiano, R.14
Karki, M.15
Boyda, E.16
Kumar, U.17
Li, S.18
-
2
-
-
84961832113
-
Learning sparse feature representations using probabilistic quadtrees and deep belief nets
-
S. Basu, M. Karki, S. Ganguly, R. DiBiano, S. Mukhopadhyay, and R. Nemani. Learning sparse feature representations using probabilistic quadtrees and deep belief nets. In Proceedings of the European Symposium on Artificial Neural Networks, ESANN, 2015.
-
(2015)
Proceedings of the European Symposium on Artificial Neural Networks, ESANN
-
-
Basu, S.1
Karki, M.2
Ganguly, S.3
DiBiano, R.4
Mukhopadhyay, S.5
Nemani, R.6
-
3
-
-
69349090197
-
Learning deep architectures for AI
-
Jan
-
Y. Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1-127, Jan. 2009.
-
(2009)
Found. Trends Mach. Learn
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
4
-
-
0003487601
-
-
Oxford University Press, Inc., New York, NY, USA
-
C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc., New York, NY, USA, 1995.
-
(1995)
Neural Networks for Pattern Recognition
-
-
Bishop, C.M.1
-
5
-
-
77956502203
-
A theoretical analysis of feature pooling in visual recognition
-
Y.-L. Boureau, J. Ponce, and Y. Lecun. A theoretical analysis of feature pooling in visual recognition. In 27th International Conference on Machine Learning, Haifa, Isreal, 2010.
-
(2010)
27th International Conference on Machine Learning, Haifa, Isreal
-
-
Boureau, Y.-L.1
Ponce, J.2
Lecun, Y.3
-
6
-
-
0035478854
-
Random forests
-
Oct
-
L. Breiman. Random forests. Mach. Learn., 45(1):5-32, Oct. 2001.
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
84899486572
-
Danco: An intrinsic dimensionality estimator exploiting angle and norm concentration
-
C. Ceruti, S. Bassis, A. Rozza, G. Lombardi, E. Casiraghi, and P. Campadelli. Danco: An intrinsic dimensionality estimator exploiting angle and norm concentration. Pattern Recognition, 47(8):2569-2581, 2014.
-
(2014)
Pattern Recognition
, vol.47
, Issue.8
, pp. 2569-2581
-
-
Ceruti, C.1
Bassis, S.2
Rozza, A.3
Lombardi, G.4
Casiraghi, E.5
Campadelli, P.6
-
9
-
-
84866714584
-
Multi-column deep neural networks for image classification
-
Washington, DC, USA, IEEE Computer Society
-
D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR ?12, pages 3642-3649, Washington, DC, USA, 2012. IEEE Computer Society.
-
(2012)
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), CVPR ?12
, pp. 3642-3649
-
-
Ciresan, D.C.1
Meier, U.2
Schmidhuber, J.3
-
10
-
-
0043164490
-
An analysis of co-occurrence texture statistics as a function of grey level quantization
-
D. A. Clausi. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sensing, 28(1):45-62, 2002.
-
(2002)
Can. J. Remote Sensing
, vol.28
, Issue.1
, pp. 45-62
-
-
Clausi, D.A.1
-
11
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei. Imagenet: A large-scale hierarchical image database. In In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Jia Li, L.4
Li, K.5
Fei-Fei, L.6
-
12
-
-
70350041108
-
Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets
-
M. A. Friedl, D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114:168-182, 2009.
-
(2009)
Remote Sensing of Environment
, vol.114
, pp. 168-182
-
-
Friedl, M.A.1
Sulla-Menashe, D.2
Tan, B.3
Schneider, A.4
Ramankutty, N.5
Sibley, A.6
Huang, X.7
-
13
-
-
0019152630
-
Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
-
K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193-202, 1980.
-
(1980)
Biological Cybernetics
, vol.36
, pp. 193-202
-
-
Fukushima, K.1
-
14
-
-
0015680481
-
Textural features for image classification
-
Nov
-
R. M. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, SMC-3(6):610-621, Nov. 1973.
-
(1973)
Systems, Man and Cybernetics, IEEE Transactions on
, vol.SMC-3
, Issue.6
, pp. 610-621
-
-
Haralick, R.M.1
Shanmugam, K.2
Dinstein, I.3
-
15
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18:2006, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 2006
-
-
Hinton, G.E.1
Osindero, S.2
-
16
-
-
33645410496
-
Receptive fields, binocular interaction, and functional architecture in the cat?s visual cortex
-
D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat?s visual cortex. Journal of Physiology (London), 160:106-154, 1962.
-
(1962)
Journal of Physiology (London
, vol.160
, pp. 106-154
-
-
Hubel, D.H.1
Wiesel, T.N.2
-
17
-
-
0036846393
-
Overview of the radiometric and biophysical performance of the MODIS vegetation indices
-
Nov
-
A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2):195-213, Nov. 2002.
-
(2002)
Remote Sensing of Environment
, vol.83
, Issue.1-2
, pp. 195-213
-
-
Huete, A.1
Didan, K.2
Miura, T.3
Rodriguez, E.P.4
Gao, X.5
Ferreira, L.G.6
-
18
-
-
0026835285
-
Atmospherically resistant vegetation index (arvi) for eos-modis
-
Mar
-
Y. Kaufman and D. Tanre. Atmospherically resistant vegetation index (arvi) for eos-modis. Geoscience and Remote Sensing, IEEE Transactions on, 30(2):261-270, Mar 1992.
-
(1992)
Geoscience and Remote Sensing IEEE Transactions on
, vol.30
, Issue.2
, pp. 261-270
-
-
Kaufman, Y.1
Tanre, D.2
-
20
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
-
(2009)
Technical Report
-
-
Krizhevsky, A.1
-
21
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
Washington, DC, USA, 2006. IEEE Computer Society
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Volume 2, CVPR ?06, pages 2169-2178, Washington, DC, USA, 2006. IEEE Computer Society.
-
Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-2, CVPR ?06
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
22
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Q. V. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Y. Ng. Building high-level features using large scale unsupervised learning. In ICML, 2012.
-
(2012)
ICML
-
-
Le, Q.V.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Corrado, G.5
Chen, K.6
Dean, J.7
Ng, A.Y.8
-
23
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, pages 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
24
-
-
84864036295
-
Efficient sparse coding algorithms
-
NIPS
-
H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In In NIPS, pages 801-808. NIPS, 2007.
-
(2007)
NIPS
, pp. 801-808
-
-
Lee, H.1
Battle, A.2
Raina, R.3
Ng, A.Y.4
-
25
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
New York, NY, USA, ACM
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML ?09, pages 609-616, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ?09
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
27
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
A.-r. Mohamed, G. E. Dahl, and G. E. Hinton. Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech & Language Processing, 20(1):14-22, 2012.
-
(2012)
IEEE Transactions on Audio, Speech & Language Processing
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.-R.1
Dahl, G.E.2
Hinton, G.E.3
-
29
-
-
0002872223
-
Monitoring vegetation systems in the great plains with ERTS
-
J. W. Rouse, R. H. Haas, J. A. Schell, and D. W. Deering. Monitoring vegetation systems in the great plains with ERTS. NASA Goddard Space Flight Center 3d ERTS-1 Symposium, pages 309-317, 1974.
-
(1974)
NASA Goddard Space Flight Center 3d ERTS-1 Symposium
, pp. 309-317
-
-
Rouse, J.W.1
Haas, R.H.2
Schell, J.A.3
Deering, W.D.4
-
30
-
-
80053448548
-
On random weights and unsupervised feature learning
-
L. Getoor and T. Scheffer, editors New York, NY, USA, June ACM
-
A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, and A. Ng. On random weights and unsupervised feature learning. In L. Getoor and T. Scheffer, editors, Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML ?11, pages 1089-1096, New York, NY, USA, June 2011. ACM.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning ICML-11), ICML ?11
, pp. 1089-1096
-
-
Saxe, A.1
Koh, P.W.2
Chen, Z.3
Bhand, M.4
Suresh, B.5
Ng, A.6
-
31
-
-
78049408551
-
Evaluation of pooling operations in convolutional architectures for object recognition
-
K. Diamantaras, W. Duch, and L. Iliadis, editors 6354 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010
-
D. Scherer, A. Mijller, and S. Behnke. Evaluation of pooling operations in convolutional architectures for object recognition. In K. Diamantaras, W. Duch, and L. Iliadis, editors, Artificial Neural Networks-ICANN 2010, volume 6354 of Lecture Notes in Computer Science, pages 92-101. Springer Berlin Heidelberg, 2010.
-
(2010)
Artificial Neural Networks-ICANN
, pp. 92-101
-
-
Scherer, D.1
Mijller, A.2
Behnke, S.3
-
34
-
-
85048921970
-
An evaluation of feature learning methods for high resolution image classification
-
P. Tokarczyk, J. Montoya, and K. Schindler. An evaluation of feature learning methods for high resolution image classification. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, I-3:389-394, 2012.
-
(2012)
ISPRS Annals of Photogrammetry Remote Sensing and Spatial Information Sciences
, vol.I-3
, pp. 389-394
-
-
Tokarczyk, P.1
Montoya, J.2
Schindler, K.3
-
35
-
-
0018465733
-
Red and photographic infrared linear combinations for monitoring vegetation
-
C. J. Tucker. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2):127-150, 1979.
-
(1979)
Remote Sensing of Environment
, vol.8
, Issue.2
, pp. 127-150
-
-
Tucker, C.J.1
-
37
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Dec
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11:3371-3408, Dec. 2010.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
38
-
-
84871864745
-
Accuracy assessment of nlcd 2006 land cover and impervious surface
-
J. D. Wickham, S. V. Stehman, L. Gass, J. Dewitz, J. A. Fry, and T. G. Wade. Accuracy assessment of nlcd 2006 land cover and impervious surface. Remote Sensing of Environment, 130:294-304, 2013.
-
(2013)
Remote Sensing of Environment
, vol.130
, pp. 294-304
-
-
Wickham, J.D.1
Stehman, S.V.2
Gass, L.3
Dewitz, J.4
Fry, J.A.5
Wade, T.G.6
-
39
-
-
84977957988
-
-
WWW1. MNIST. http://yann.lecun.com/exdb/mnist/.
-
WWW1. MNIST
-
-
-
40
-
-
84977942453
-
-
WWW2. NAIP. http://www.fsa.usda.gov/Internet/FSA-File/naip-2009-info-final.pdf.
-
WWW2. NAIP
-
-
-
41
-
-
84977942452
-
-
WWW3. MODIS. http://vip.arizona.edu/documents/MODIS/MODIS-VI-UsersGuide-01-2012.pdf.
-
WWW3. MODIS
-
-
-
42
-
-
84977957985
-
-
WWW4. DATASETS. http://csc.lsu.edu/~saikat/deepsat/.
-
WWW4. DATASETS
-
-
-
43
-
-
84977964936
-
-
WWW5. NLCD. http://www.gsd.harvard.edu/gis/manual/earthshelter/National% 20Land-Cover%20Dataset%20%28NLCD%29% 20Metadata%20%20US%20EPA.htm.
-
WWW5. NLCD
-
-
|