메뉴 건너뛰기




Volumn 03-06-November-2015, Issue , 2015, Pages

DeepSat - A learning framework for satellite imagery

Author keywords

Deep learning; High resolution; Satellite imagery

Indexed keywords

ARTIFICIAL INTELLIGENCE; BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); COMPUTER VISION; DECISION TREES; GEOGRAPHIC INFORMATION SYSTEMS; INFORMATION SYSTEMS; LEARNING SYSTEMS; NEURAL NETWORKS; OBJECT RECOGNITION; REMOTE SENSING; SATELLITE IMAGERY; SATELLITES; SUPERVISED LEARNING;

EID: 84961207640     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2820783.2820816     Document Type: Conference Paper
Times cited : (268)

References (43)
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Jan
    • Y. Bengio. Learning deep architectures for AI. Found. Trends Mach. Learn., 2(1):1-127, Jan. 2009.
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Oct
    • L. Breiman. Random forests. Mach. Learn., 45(1):5-32, Oct. 2001.
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 84899486572 scopus 로고    scopus 로고
    • Danco: An intrinsic dimensionality estimator exploiting angle and norm concentration
    • C. Ceruti, S. Bassis, A. Rozza, G. Lombardi, E. Casiraghi, and P. Campadelli. Danco: An intrinsic dimensionality estimator exploiting angle and norm concentration. Pattern Recognition, 47(8):2569-2581, 2014.
    • (2014) Pattern Recognition , vol.47 , Issue.8 , pp. 2569-2581
    • Ceruti, C.1    Bassis, S.2    Rozza, A.3    Lombardi, G.4    Casiraghi, E.5    Campadelli, P.6
  • 10
    • 0043164490 scopus 로고    scopus 로고
    • An analysis of co-occurrence texture statistics as a function of grey level quantization
    • D. A. Clausi. An analysis of co-occurrence texture statistics as a function of grey level quantization. Can. J. Remote Sensing, 28(1):45-62, 2002.
    • (2002) Can. J. Remote Sensing , vol.28 , Issue.1 , pp. 45-62
    • Clausi, D.A.1
  • 13
    • 0019152630 scopus 로고
    • Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193-202, 1980.
    • (1980) Biological Cybernetics , vol.36 , pp. 193-202
    • Fukushima, K.1
  • 15
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18:2006, 2006.
    • (2006) Neural Computation , vol.18 , pp. 2006
    • Hinton, G.E.1    Osindero, S.2
  • 16
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction, and functional architecture in the cat?s visual cortex
    • D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction, and functional architecture in the cat?s visual cortex. Journal of Physiology (London), 160:106-154, 1962.
    • (1962) Journal of Physiology (London , vol.160 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 17
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Nov
    • A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2):195-213, Nov. 2002.
    • (2002) Remote Sensing of Environment , vol.83 , Issue.1-2 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, X.5    Ferreira, L.G.6
  • 18
    • 0026835285 scopus 로고
    • Atmospherically resistant vegetation index (arvi) for eos-modis
    • Mar
    • Y. Kaufman and D. Tanre. Atmospherically resistant vegetation index (arvi) for eos-modis. Geoscience and Remote Sensing, IEEE Transactions on, 30(2):261-270, Mar 1992.
    • (1992) Geoscience and Remote Sensing IEEE Transactions on , vol.30 , Issue.2 , pp. 261-270
    • Kaufman, Y.1    Tanre, D.2
  • 20
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.
    • (2009) Technical Report
    • Krizhevsky, A.1
  • 24
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • NIPS
    • H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms. In In NIPS, pages 801-808. NIPS, 2007.
    • (2007) NIPS , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 31
    • 78049408551 scopus 로고    scopus 로고
    • Evaluation of pooling operations in convolutional architectures for object recognition
    • K. Diamantaras, W. Duch, and L. Iliadis, editors 6354 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010
    • D. Scherer, A. Mijller, and S. Behnke. Evaluation of pooling operations in convolutional architectures for object recognition. In K. Diamantaras, W. Duch, and L. Iliadis, editors, Artificial Neural Networks-ICANN 2010, volume 6354 of Lecture Notes in Computer Science, pages 92-101. Springer Berlin Heidelberg, 2010.
    • (2010) Artificial Neural Networks-ICANN , pp. 92-101
    • Scherer, D.1    Mijller, A.2    Behnke, S.3
  • 32
    • 0033097007 scopus 로고    scopus 로고
    • Texture analysis of sar sea ice imagery using gray level co-occurrence matrices
    • L. K. Soh and C. Tsatsoulis. Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. Geoscience and Remote Sensing, IEEE Transactions on, pages 780-795, 1999.
    • (1999) Geoscience and Remote Sensing IEEE Transactions on , pp. 780-795
    • Soh, L.K.1    Tsatsoulis, C.2
  • 35
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • C. J. Tucker. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2):127-150, 1979.
    • (1979) Remote Sensing of Environment , vol.8 , Issue.2 , pp. 127-150
    • Tucker, C.J.1
  • 37
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11:3371-3408, Dec. 2010.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 39
    • 84977957988 scopus 로고    scopus 로고
    • WWW1. MNIST. http://yann.lecun.com/exdb/mnist/.
    • WWW1. MNIST
  • 40
    • 84977942453 scopus 로고    scopus 로고
    • WWW2. NAIP. http://www.fsa.usda.gov/Internet/FSA-File/naip-2009-info-final.pdf.
    • WWW2. NAIP
  • 41
    • 84977942452 scopus 로고    scopus 로고
    • WWW3. MODIS. http://vip.arizona.edu/documents/MODIS/MODIS-VI-UsersGuide-01-2012.pdf.
    • WWW3. MODIS
  • 42
    • 84977957985 scopus 로고    scopus 로고
    • WWW4. DATASETS. http://csc.lsu.edu/~saikat/deepsat/.
    • WWW4. DATASETS
  • 43
    • 84977964936 scopus 로고    scopus 로고
    • WWW5. NLCD. http://www.gsd.harvard.edu/gis/manual/earthshelter/National% 20Land-Cover%20Dataset%20%28NLCD%29% 20Metadata%20%20US%20EPA.htm.
    • WWW5. NLCD


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.