메뉴 건너뛰기




Volumn 31, Issue 7, 2017, Pages 2141-2156

Integrated SARIMA with Neuro-Fuzzy Systems and Neural Networks for Monthly Inflow Prediction

Author keywords

Forecasting; Hybrid model; Inflow; SARIMA; Soft computing

Indexed keywords

DATA HANDLING; DEEP NEURAL NETWORKS; FORECASTING; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; NEURAL NETWORKS; PROCESSING; SOFT COMPUTING; WATER RESOURCES;

EID: 85028251765     PISSN: 09204741     EISSN: 15731650     Source Type: Journal    
DOI: 10.1007/s11269-017-1632-7     Document Type: Article
Times cited : (69)

References (39)
  • 1
    • 84884167501 scopus 로고    scopus 로고
    • A new hybrid artificial neural networks for rainfall–runoff process modeling
    • Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 121:470–480
    • (2013) Neurocomputing , vol.121 , pp. 470-480
    • Asadi, S.1    Shahrabi, J.2    Abbaszadeh, P.3    Tabanmehr, S.4
  • 2
    • 85028183824 scopus 로고    scopus 로고
    • Modeling of stage-discharge relationship for Gharraf River, southern Iraq by using data driven techniques: a case study
    • Atiaa AM (2015) Modeling of stage-discharge relationship for Gharraf River, southern Iraq by using data driven techniques: a case study. Water Utility J 9:31–46
    • (2015) Water Utility J , vol.9 , pp. 31-46
    • Atiaa, A.M.1
  • 3
    • 85016682176 scopus 로고    scopus 로고
    • Comparison of linear regression, non-linear regression and artificial neural network model for downscaling of rainfall at Subansiri river basin, Assam, India
    • Barman S, Bhattacharjya RK (2015) Comparison of linear regression, non-linear regression and artificial neural network model for downscaling of rainfall at Subansiri river basin, Assam, India. Eur Water 51:51–62
    • (2015) Eur Water , vol.51 , pp. 51-62
    • Barman, S.1    Bhattacharjya, R.K.2
  • 4
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model
    • Cadenas E, Rivera W (2010) Wind speed forecasting in three different regions of Mexico using a hybrid ARIMA-ANN model. Renew Energ 35:2732–2738
    • (2010) Renew Energ , vol.35 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 5
    • 0029412179 scopus 로고
    • Product periodic autoregressive processes for modeling intermittent monthly streamflows
    • Chebaane M, Salas JD, Boes DC (1995) Product periodic autoregressive processes for modeling intermittent monthly streamflows. Water Resour Res 31:1513–1518
    • (1995) Water Resour Res , vol.31 , pp. 1513-1518
    • Chebaane, M.1    Salas, J.D.2    Boes, D.C.3
  • 6
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230:244–257
    • (2000) J Hydrol , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 7
    • 84882314134 scopus 로고    scopus 로고
    • Evaluation of sediment transport in sewer using artificial neural network
    • Ebtehaj I, Bonakdari H (2013) Evaluation of sediment transport in sewer using artificial neural network. Eng Appl Comput Fluid Mech 7(3):382–392
    • (2013) Eng Appl Comput Fluid Mech , vol.7 , Issue.3 , pp. 382-392
    • Ebtehaj, I.1    Bonakdari, H.2
  • 8
    • 85027942599 scopus 로고    scopus 로고
    • Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewer
    • Ebtehaj I, Bonakdari H (2014) Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewer. Water Resour Manag 28:4765–4779
    • (2014) Water Resour Manag , vol.28 , pp. 4765-4779
    • Ebtehaj, I.1    Bonakdari, H.2
  • 9
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Faruk DÖ (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23:586–594
    • (2010) Eng Appl Artif Intell , vol.23 , pp. 586-594
    • Faruk, D.Ö.1
  • 10
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat M (2008) Comparison of artificial intelligence techniques for river flow forecasting. Hydrol Earth Syst Sci 12:123–139
    • (2008) Hydrol Earth Syst Sci , vol.12 , pp. 123-139
    • Firat, M.1
  • 11
    • 85028239016 scopus 로고    scopus 로고
    • Neural networks and learning machines. Pearson education upper Saddle River, New Jersey
    • Haykin SS (2009) Neural networks and learning machines. Pearson education upper Saddle River, New Jersey, USA
    • (2009) USA
    • Haykin, S.S.1
  • 12
    • 84890351420 scopus 로고    scopus 로고
    • A comparative study of artificial neural network adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
    • He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386
    • (2014) J Hydrol , vol.509 , pp. 379-386
    • He, Z.1    Wen, X.2    Liu, H.3    Du, J.4
  • 13
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A, Kumar AM (2007) Hybrid neural network models for hydrologic time series forecasting. Appl Soft Comput 7:585–592
    • (2007) Appl Soft Comput , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 14
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Manage Cybernet 23(3):665–685
    • (1993) IEEE Trans Syst Manage Cybernet , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 15
    • 79151479582 scopus 로고    scopus 로고
    • Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. [book review]
    • Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. [book review]. IEEE Trans Autom Control 42:1482–1484
    • (1997) IEEE Trans Autom Control , vol.42 , pp. 1482-1484
    • Jang, J.S.R.1    Sun, C.T.2    Mizutani, E.3
  • 16
    • 84902550714 scopus 로고    scopus 로고
    • An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)
    • Jeong K, Koo C, Hong T (2014) An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network). Energy 71:71–79
    • (2014) Energy , vol.71 , pp. 71-79
    • Jeong, K.1    Koo, C.2    Hong, T.3
  • 17
    • 84899863667 scopus 로고    scopus 로고
    • A hybrid method based on wavelet ANN and ARIMA model for short-term load forecasting
    • Kavousi Fard A, Akbari Zadeh MR (2014) A hybrid method based on wavelet ANN and ARIMA model for short-term load forecasting. J Exp Theor Artif In 26:167–182
    • (2014) J Exp Theor Artif In , vol.26 , pp. 167-182
    • Kavousi Fard, A.1    Akbari Zadeh, M.R.2
  • 18
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • Khashei M, Bijari M (2011) A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl Soft Comput 11:2664–2675
    • (2011) Appl Soft Comput , vol.11 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 19
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi Ö, Cigizoglu HK (2007) Comparison of different ANN techniques in river flow prediction. Civ Eng Environ Syst 24:211–231
    • (2007) Civ Eng Environ Syst , vol.24 , pp. 211-231
    • Kisi, Ö.1    Cigizoglu, H.K.2
  • 20
    • 84940961004 scopus 로고    scopus 로고
    • Reservoir inflow forecasting using ensemble models based on neural networks wavelet analysis and bootstrap method
    • Kumar S, Tiwari MK, Chatterjee C, Mishra A (2015) Reservoir inflow forecasting using ensemble models based on neural networks wavelet analysis and bootstrap method. Water Resour Manag 29:4863–4883
    • (2015) Water Resour Manag , vol.29 , pp. 4863-4883
    • Kumar, S.1    Tiwari, M.K.2    Chatterjee, C.3    Mishra, A.4
  • 21
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu H, Tian HQ, Li YF (2012) Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energ 98:415–424
    • (2012) Appl Energ , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 22
    • 84973137761 scopus 로고    scopus 로고
    • Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA-ANN model
    • Moeeni H, Bonakdari H (2016) Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA-ANN model. Stoch Env Res Risk A. doi:10.1007/s00477-016-1273-z
    • (2016) Stoch Env Res Risk A
    • Moeeni, H.1    Bonakdari, H.2
  • 23
    • 85015785541 scopus 로고    scopus 로고
    • Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach
    • Moeeni H, Bonakdari H, Ebtehaj I (2017b) Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach. J Earth Syst Sci 126:1–13
    • (2017) J Earth Syst Sci , vol.126 , pp. 1-13
    • Moeeni, H.1    Bonakdari, H.2    Ebtehaj, I.3
  • 24
    • 85028234226 scopus 로고    scopus 로고
    • Assessment of stochastic models and a hybrid artificial neural network-genetic algorithm method in forecasting monthly reservoir inflow
    • Moeeni H, Bonakdari H, Fatemi SE, Zaji AH (2017a) Assessment of stochastic models and a hybrid artificial neural network-genetic algorithm method in forecasting monthly reservoir inflow. INAE Lett. doi:10.1007/s41403-017-0017-9
    • (2017) INAE Lett
    • Moeeni, H.1    Bonakdari, H.2    Fatemi, S.E.3    Zaji, A.H.4
  • 25
    • 0029412334 scopus 로고
    • Multiplicative seasonal ARIMA model for longterm forecasting of inflows
    • Mohan S, Vedula S (1995) Multiplicative seasonal ARIMA model for longterm forecasting of inflows. Water Resour Manag 9:115–126
    • (1995) Water Resour Manag , vol.9 , pp. 115-126
    • Mohan, S.1    Vedula, S.2
  • 26
    • 84991587500 scopus 로고    scopus 로고
    • Application of adaptive network-based fuzzy inference system (ANFIS) for river stage prediction in a tropical catchment
    • Nawaz N, Harun S, Talei A (2015) Application of adaptive network-based fuzzy inference system (ANFIS) for river stage prediction in a tropical catchment. Appl Mech Mater: Trans Tech Publ 735:195–199
    • (2015) Appl Mech Mater: Trans Tech Publ , vol.735 , pp. 195-199
    • Nawaz, N.1    Harun, S.2    Talei, A.3
  • 27
    • 84930014293 scopus 로고    scopus 로고
    • Time series forecasting by using hybrid models for monthly streamflow data
    • Pandhiani SM, Shabri AB (2015) Time series forecasting by using hybrid models for monthly streamflow data. Appl Math Sci 9:2809–2829
    • (2015) Appl Math Sci , vol.9 , pp. 2809-2829
    • Pandhiani, S.M.1    Shabri, A.B.2
  • 28
    • 84881499389 scopus 로고    scopus 로고
    • ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient
    • Pektas AO, Cigizoglu HK (2013) ANN hybrid model versus ARIMA and ARIMAX models of runoff coefficient. J Hydrol 500:21–36
    • (2013) J Hydrol , vol.500 , pp. 21-36
    • Pektas, A.O.1    Cigizoglu, H.K.2
  • 29
    • 84899860927 scopus 로고    scopus 로고
    • Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting
    • Ruiz-Aguilar J, Turias I, Jiménez-Come M (2014) Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting. Transport Res E-Log 67:1–13
    • (2014) Transport Res E-Log , vol.67 , pp. 1-13
    • Ruiz-Aguilar, J.1    Turias, I.2    Jiménez-Come, M.3
  • 30
  • 31
    • 23044500436 scopus 로고    scopus 로고
    • Correlations and crossing rates of periodic-stochastic hydrologic processes
    • Salas JD, Chung CH, Cancelliere A (2005) Correlations and crossing rates of periodic-stochastic hydrologic processes. J Hydrol Eng 10:278–287
    • (2005) J Hydrol Eng , vol.10 , pp. 278-287
    • Salas, J.D.1    Chung, C.H.2    Cancelliere, A.3
  • 32
    • 84936985967 scopus 로고    scopus 로고
    • Long-term runoff study using SARIMA and ARIMA models in the United States
    • Valipour M (2015) Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol Appl 22:592–598
    • (2015) Meteorol Appl , vol.22 , pp. 592-598
    • Valipour, M.1
  • 33
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476:433–441
    • (2013) J Hydrol , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 34
    • 84900631035 scopus 로고    scopus 로고
    • Forecasting electricity price and demand using a hybrid approach based on wavelet transform ARIMA and neural networks
    • Voronin S, Partanen J (2014) Forecasting electricity price and demand using a hybrid approach based on wavelet transform ARIMA and neural networks. Int J Energ Res 38:626–637
    • (2014) Int J Energ Res , vol.38 , pp. 626-637
    • Voronin, S.1    Partanen, J.2
  • 35
    • 84863272108 scopus 로고    scopus 로고
    • Comparative case study of rainfall-runoff modeling between SWMM and fuzzy logic approach
    • Wang KH, Altunkaynak A (2011) Comparative case study of rainfall-runoff modeling between SWMM and fuzzy logic approach. J Hydrol Eng 17:283–291
    • (2011) J Hydrol Eng , vol.17 , pp. 283-291
    • Wang, K.H.1    Altunkaynak, A.2
  • 36
    • 84939955777 scopus 로고    scopus 로고
    • Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
    • Wang WC, Chau KW, Xu DM, Chen XY (2015b) Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour Manag 29:2655–2675
    • (2015) Water Resour Manag , vol.29 , pp. 2655-2675
    • Wang, W.C.1    Chau, K.W.2    Xu, D.M.3    Chen, X.Y.4
  • 37
    • 84921916753 scopus 로고    scopus 로고
    • A self-adaptive hybrid approach for wind speed forecasting
    • Wang J, Hu J, Ma K, Zhang Y (2015a) A self-adaptive hybrid approach for wind speed forecasting. Renew Energ 78:374–385
    • (2015) Renew Energ , vol.78 , pp. 374-385
    • Wang, J.1    Hu, J.2    Ma, K.3    Zhang, Y.4
  • 38
    • 13744260107 scopus 로고    scopus 로고
    • Application of linear stochastic models to monthly flow data of Kelkit stream
    • Yurekli K, Kurunc A, Ozturk F (2005) Application of linear stochastic models to monthly flow data of Kelkit stream. Ecol Model 183:67–75
    • (2005) Ecol Model , vol.183 , pp. 67-75
    • Yurekli, K.1    Kurunc, A.2    Ozturk, F.3
  • 39
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang GP (2003) Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50:159–175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.