메뉴 건너뛰기




Volumn 29, Issue 13, 2015, Pages 4863-4883

Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method

Author keywords

Damodar catchment; Forecasting; Neural networks; Reservoir inflow; Wavelet analysis

Indexed keywords

CATCHMENTS; FORECASTING; GAGES; LINEAR REGRESSION; METADATA; NEURAL NETWORKS; PRECIPITATION (METEOROLOGY); RAIN; RAIN GAGES; REGRESSION ANALYSIS; RESERVOIR MANAGEMENT; RESERVOIRS (WATER); RUNOFF; TIME SERIES; WATER RESOURCES; WAVELET ANALYSIS;

EID: 84940961004     PISSN: 09204741     EISSN: 15731650     Source Type: Journal    
DOI: 10.1007/s11269-015-1095-7     Document Type: Article
Times cited : (92)

References (57)
  • 1
    • 33645204046 scopus 로고    scopus 로고
    • Neural network rainfall–runoff forecasting based on continuous resampling
    • Abrahart RJ (2003) Neural network rainfall–runoff forecasting based on continuous resampling. J Hydroinf 5(1):51–61
    • (2003) J Hydroinf , vol.5 , Issue.1 , pp. 51-61
    • Abrahart, R.J.1
  • 3
    • 39549095416 scopus 로고    scopus 로고
    • Peak daily water demand forecast modeling using artificial neural networks
    • Adamowski JF (2008) Peak daily water demand forecast modeling using artificial neural networks. J Water Resour Plan Manag 134(2):119–128
    • (2008) J Water Resour Plan Manag , vol.134 , Issue.2 , pp. 119-128
    • Adamowski, J.F.1
  • 4
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1):85–91
    • (2010) J Hydrol , vol.390 , Issue.1 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 5
    • 84872603220 scopus 로고    scopus 로고
    • A spectral analysis based methodology to detect climatological influences on daily urban water demand
    • Adamowski J, Adamowski K, Prokoph A (2013) A spectral analysis based methodology to detect climatological influences on daily urban water demand. Math Geosci 45(1):49–68
    • (2013) Math Geosci , vol.45 , Issue.1 , pp. 49-68
    • Adamowski, J.1    Adamowski, K.2    Prokoph, A.3
  • 6
    • 84879686138 scopus 로고    scopus 로고
    • Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations
    • Arhami M, Kamali N, Rajabi MM (2013) Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ Sci Pollut Res 20(7):4777–4789
    • (2013) Environ Sci Pollut Res , vol.20 , Issue.7 , pp. 4777-4789
    • Arhami, M.1    Kamali, N.2    Rajabi, M.M.3
  • 9
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B, Fanni A, See L, Sias G (2006) Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth 31(18):1164–1171
    • (2006) Phys Chem Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 10
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P, Anctil F, Bobee B (2000) Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J Hydrol 230(3–4):244–257
    • (2000) J Hydrol , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 12
    • 0033685056 scopus 로고    scopus 로고
    • Nonstationarity and data preprocessing for neural network predictions of an economic time series
    • Francesco V, Bernd F (2000) Nonstationarity and data preprocessing for neural network predictions of an economic time series. Proc Int Joint Conf Neural Netw 5:129–134
    • (2000) Proc Int Joint Conf Neural Netw , vol.5 , pp. 129-134
    • Francesco, V.1    Bernd, F.2
  • 13
    • 84871527154 scopus 로고    scopus 로고
    • A useful automated rainfall-runoff model for engineering applications in semi-arid regions
    • Gad MA (2013) A useful automated rainfall-runoff model for engineering applications in semi-arid regions. Comput Geosci 52:443–452
    • (2013) Comput Geosci , vol.52 , pp. 443-452
    • Gad, M.A.1
  • 15
    • 78549256372 scopus 로고    scopus 로고
    • Predictive models for forecasting hourly urban water demand
    • Herrera M, Torgo L, Izquierdo J, Perez-Garcıa R (2010) Predictive models for forecasting hourly urban water demand. J Hydrol 387(1–2):141–150
    • (2010) J Hydrol , vol.387 , Issue.1-2 , pp. 141-150
    • Herrera, M.1    Torgo, L.2    Izquierdo, J.3    Perez-Garcıa, R.4
  • 16
    • 67949102009 scopus 로고    scopus 로고
    • Bayesian committee of neural networks to predict travel times with confidence intervals
    • Hinsbergen CPI, Lint JWC, Zuylen HJ (2009) Bayesian committee of neural networks to predict travel times with confidence intervals. Transp Res C 17(5):498–509
    • (2009) Transp Res C , vol.17 , Issue.5 , pp. 498-509
    • Hinsbergen, C.P.I.1    Lint, J.W.C.2    Zuylen, H.J.3
  • 17
    • 0035494446 scopus 로고    scopus 로고
    • Short-term water demand forecast modeling at iit kanpur using artificial neural networks
    • Jain A, Varshney K, Joshi UC (2001) Short-term water demand forecast modeling at iit kanpur using artificial neural networks. Water Resour Manag 15(1):299–321
    • (2001) Water Resour Manag , vol.15 , Issue.1 , pp. 299-321
    • Jain, A.1    Varshney, K.2    Joshi, U.C.3
  • 18
    • 33750682003 scopus 로고    scopus 로고
    • Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
    • Jia Y, Culver TB (2006) Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J Hydrol 331(3–4):580–590
    • (2006) J Hydrol , vol.331 , Issue.3-4 , pp. 580-590
    • Jia, Y.1    Culver, T.B.2
  • 19
    • 84862673732 scopus 로고    scopus 로고
    • Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data
    • Jothiprakash V, Magar RB (2012) Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. J Hydrol 450–451:293–307
    • (2012) J Hydrol , vol.450-451 , pp. 293-307
    • Jothiprakash, V.1    Magar, R.B.2
  • 20
    • 84888850714 scopus 로고    scopus 로고
    • Comparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecasting
    • Kant A, Suman PK, Giri BK, Tiwari MK, Chatterjee C, Nayak PC, Kumar S (2013) Comparison of multi-objective evolutionary neural network, adaptive neuro-fuzzy inference system and bootstrap-based neural network for flood forecasting. Neural Comput Applic 23(1):231–246
    • (2013) Neural Comput Applic , vol.23 , Issue.1 , pp. 231-246
    • Kant, A.1    Suman, P.K.2    Giri, B.K.3    Tiwari, M.K.4    Chatterjee, C.5    Nayak, P.C.6    Kumar, S.7
  • 21
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kişi O (2009) Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J Hydrol Eng 14(8):773–782
    • (2009) J Hydrol Eng , vol.14 , Issue.8 , pp. 773-782
    • Kişi, O.1
  • 22
    • 77955049922 scopus 로고    scopus 로고
    • Wavelet regression model for short-term streamflow forecasting
    • Kisi O (2010) Wavelet regression model for short-term streamflow forecasting. J Hydrol 389(3–4):344–353
    • (2010) J Hydrol , vol.389 , Issue.3-4 , pp. 344-353
    • Kisi, O.1
  • 23
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J Hydrol 399(1–2):132–140
    • (2011) J Hydrol , vol.399 , Issue.1-2 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 24
    • 84865493473 scopus 로고    scopus 로고
    • Reply to discussion of “Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models
    • Kisi O, Shiri J (2012) Reply to discussion of “Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models”. Water Resour Manag 26(12):3663–3665
    • (2012) Water Resour Manag , vol.26 , Issue.12 , pp. 3663-3665
    • Kisi, O.1    Shiri, J.2
  • 25
    • 84925381919 scopus 로고    scopus 로고
    • Comparison of wavelet based ANN and regression models for reservoir inflow forecasting
    • Krishna B (2014) Comparison of wavelet based ANN and regression models for reservoir inflow forecasting. J Hydrol Eng 19(7):1385–1400
    • (2014) J Hydrol Eng , vol.19 , Issue.7 , pp. 1385-1400
    • Krishna, B.1
  • 26
    • 33751581359 scopus 로고    scopus 로고
    • Wavelet regression technique for stream flow prediction
    • Kucuk M, Oglu NA (2006) Wavelet regression technique for stream flow prediction. J Appl Stat 33(9):943–960
    • (2006) J Appl Stat , vol.33 , Issue.9 , pp. 943-960
    • Kucuk, M.1    Oglu, N.A.2
  • 27
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran R, Khosa R (2012) Comparative study of different wavelets for hydrologic forecasting. Comput Geosci 46:284–295
    • (2012) Comput Geosci , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 28
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2010) Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ Model Softw 15:101–124
    • (2010) Environ Model Softw , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 29
    • 85027953848 scopus 로고    scopus 로고
    • Intermittent streamflow forecasting and extreme event modelling using wavelet based artificial neural networks
    • Makwana JJ, Tiwari MK (2014) Intermittent streamflow forecasting and extreme event modelling using wavelet based artificial neural networks. Water Resour Manag 28:4857–4873
    • (2014) Water Resour Manag , vol.28 , pp. 4857-4873
    • Makwana, J.J.1    Tiwari, M.K.2
  • 30
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: the wavelet representation
    • Mallat SG (1989) A theory for multi resolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693
    • (1989) IEEE Trans Pattern Anal Mach Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 31
    • 58549115672 scopus 로고    scopus 로고
    • Optimal operation of a multi-purpose reservoir using neuro-fuzzy technique
    • Mehta R, Jain SK (2009) Optimal operation of a multi-purpose reservoir using neuro-fuzzy technique. Water Resour Manag 23:509–529
    • (2009) Water Resour Manag , vol.23 , pp. 509-529
    • Mehta, R.1    Jain, S.K.2
  • 32
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
    • Mukerjee A, Chatterjee C, Raghuwanshi NS (2009) Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J Hydrol Eng 14(6):647–652
    • (2009) J Hydrol Eng , vol.14 , Issue.6 , pp. 647-652
    • Mukerjee, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 33
    • 38749142907 scopus 로고    scopus 로고
    • A combined neural wavelet model for prediction of watershed precipitation, Ligvanchai, Iran
    • Nourani V, Alami MT, Aminfar MH (2008) A combined neural wavelet model for prediction of watershed precipitation, Ligvanchai, Iran. J Environ Hydrol 16(2):1–12
    • (2008) J Environ Hydrol , vol.16 , Issue.2 , pp. 1-12
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 34
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall–runoff modeling
    • Nourani V, Komasi M, Mano A (2009) A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Resour Manag 23(14):2877–2894
    • (2009) Water Resour Manag , vol.23 , Issue.14 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 35
    • 84871943582 scopus 로고    scopus 로고
    • Wavelet neural network model for reservoir inflow prediction
    • Okkan U (2012) Wavelet neural network model for reservoir inflow prediction. Sci Iran 19(6):1445–1455
    • (2012) Sci Iran , vol.19 , Issue.6 , pp. 1445-1455
    • Okkan, U.1
  • 36
    • 71649098140 scopus 로고    scopus 로고
    • Modeling evapotranspiration using discrete wavelet transform and neural networks
    • Partal T (2009) Modeling evapotranspiration using discrete wavelet transform and neural networks. Hydrol Process 23(25):3545–3555
    • (2009) Hydrol Process , vol.23 , Issue.25 , pp. 3545-3555
    • Partal, T.1
  • 37
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342(1–2):199–212
    • (2007) J Hydrol , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 38
    • 79959810234 scopus 로고    scopus 로고
    • Comparing the capability of distributed and lumped hydrologic models for analyzing the effects of land use change
    • Paudel M, Nelson EJ, Downer CW, Hotchkiss R (2011) Comparing the capability of distributed and lumped hydrologic models for analyzing the effects of land use change. J Hydroinf 13(3):461–473
    • (2011) J Hydroinf , vol.13 , Issue.3 , pp. 461-473
    • Paudel, M.1    Nelson, E.J.2    Downer, C.W.3    Hotchkiss, R.4
  • 39
    • 73249147931 scopus 로고    scopus 로고
    • Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model
    • Rajaee T, Mirbagheri SA, Nourani V, Alikhani A (2010) Prediction of daily suspended sediment load using wavelet and neuro-fuzzy combined model. Int J Environ Sci Technol 7(1):93–110
    • (2010) Int J Environ Sci Technol , vol.7 , Issue.1 , pp. 93-110
    • Rajaee, T.1    Mirbagheri, S.A.2    Nourani, V.3    Alikhani, A.4
  • 41
    • 84885186548 scopus 로고    scopus 로고
    • Hierarchical neurofuzzy model for real-time flood forecasting
    • Rath S, Nayak PC, Chatterjee C (2013) Hierarchical neurofuzzy model for real-time flood forecasting. Int J River Basin Manag 11(3):253–268
    • (2013) Int J River Basin Manag , vol.11 , Issue.3 , pp. 253-268
    • Rath, S.1    Nayak, P.C.2    Chatterjee, C.3
  • 42
    • 84887548611 scopus 로고    scopus 로고
    • Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet volterra nonlinear method
    • Rathinasamy M, Adamowski J, Khosa R (2013) Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet volterra nonlinear method. J Hydrol 507:186–200
    • (2013) J Hydrol , vol.507 , pp. 186-200
    • Rathinasamy, M.1    Adamowski, J.2    Khosa, R.3
  • 43
    • 84878148042 scopus 로고    scopus 로고
    • Wavelet regression models for predicting flood stages in rivers: a case study in Eastern India
    • Sahay RR, Sehgal V (2013) Wavelet regression models for predicting flood stages in rivers: a case study in Eastern India. J Flood Risk Manag 6(2):146–155
    • (2013) J Flood Risk Manag , vol.6 , Issue.2 , pp. 146-155
    • Sahay, R.R.1    Sehgal, V.2
  • 44
    • 84892477888 scopus 로고    scopus 로고
    • Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network
    • Sahay RR, Srivastava A (2014) Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Water Resour Manag 28:301–317
    • (2014) Water Resour Manag , vol.28 , pp. 301-317
    • Sahay, R.R.1    Srivastava, A.2
  • 45
    • 84897571647 scopus 로고    scopus 로고
    • Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models
    • Sehgal V, Sahay RR, Chatterjee C (2014a) Effect of utilization of discrete wavelet components on flood forecasting performance of wavelet based ANFIS models. Water Resour Manag 28(6):1733–1749
    • (2014) Water Resour Manag , vol.28 , Issue.6 , pp. 1733-1749
    • Sehgal, V.1    Sahay, R.R.2    Chatterjee, C.3
  • 46
    • 84903647373 scopus 로고    scopus 로고
    • Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting
    • Sehgal V, Tiwari MK, Chatterjee C (2014b) Wavelet bootstrap multiple linear regression based hybrid modeling for daily river discharge forecasting. Water Resour Manag 28(10):2793–2811
    • (2014) Water Resour Manag , vol.28 , Issue.10 , pp. 2793-2811
    • Sehgal, V.1    Tiwari, M.K.2    Chatterjee, C.3
  • 47
    • 68349123741 scopus 로고    scopus 로고
    • Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley catchment
    • Sharma SK, Tiwari KN (2009) Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley catchment. J Hydrol 374(3–4):209–222
    • (2009) J Hydrol , vol.374 , Issue.3-4 , pp. 209-222
    • Sharma, S.K.1    Tiwari, K.N.2
  • 48
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach
    • Tiwari MK, Chatterjee C (2010) Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach. J Hydrol 394:458–470
    • (2010) J Hydrol , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 49
    • 79959790257 scopus 로고    scopus 로고
    • A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting
    • Tiwari MK, Chatterjee C (2011) A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting. J Hydroinf 13(3):500–519
    • (2011) J Hydroinf , vol.13 , Issue.3 , pp. 500-519
    • Tiwari, M.K.1    Chatterjee, C.2
  • 50
    • 84876400204 scopus 로고    scopus 로고
    • Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps
    • Tiwari MK, Song KY, Chatterjee C, Gupta MM (2013) Improving reliability of river flow forecasting using neural networks, wavelets and self-organizing maps. J Hydroinf 15(2):486–502
    • (2013) J Hydroinf , vol.15 , Issue.2 , pp. 486-502
    • Tiwari, M.K.1    Song, K.Y.2    Chatterjee, C.3    Gupta, M.M.4
  • 51
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • Twomey J, Smith A (1998) Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):417–430
    • (1998) IEEE Trans Syst Man Cybern Part C Appl Rev , vol.28 , Issue.3 , pp. 417-430
    • Twomey, J.1    Smith, A.2
  • 52
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour M, Banihabib ME, Behbahani SMR (2013) Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J Hydrol 476(7):433–441
    • (2013) J Hydrol , vol.476 , Issue.7 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 53
    • 77953356904 scopus 로고    scopus 로고
    • Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system
    • Verma AK, Jha MK, Mahana RK (2010) Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy Water Environ 8(2):131–144
    • (2010) Paddy Water Environ , vol.8 , Issue.2 , pp. 131-144
    • Verma, A.K.1    Jha, M.K.2    Mahana, R.K.3
  • 54
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang D, Ding J (2003) Wavelet network model and its application to the prediction of hydrology. Nat Sci 1(1):67–71
    • (2003) Nat Sci , vol.1 , Issue.1 , pp. 67-71
    • Wang, D.1    Ding, J.2
  • 55
    • 33748078483 scopus 로고    scopus 로고
    • Testing for nonlinearity of streamflow processes at different timescales
    • Wang W, Vrijling JK, Van Gelder PHAJM, Ma J (2006) Testing for nonlinearity of streamflow processes at different timescales. J Hydrol 322(1–4):247–268
    • (2006) J Hydrol , vol.322 , Issue.1-4 , pp. 247-268
    • Wang, W.1    Vrijling, J.K.2    Van Gelder, P.H.A.J.M.3    Ma, J.4
  • 56
    • 84891090198 scopus 로고    scopus 로고
    • Monthly water quality forecasting and uncertainty assessment via bootstrapped wavelet neural networks under missing data for Harbin, China
    • Wang Y, Zheng T, Zhao Y, Jiang J, Wang Y, Guo L, Wang P (2013) Monthly water quality forecasting and uncertainty assessment via bootstrapped wavelet neural networks under missing data for Harbin, China. Environ Sci Pollut Res 20(12):8909–8923
    • (2013) Environ Sci Pollut Res , vol.20 , Issue.12 , pp. 8909-8923
    • Wang, Y.1    Zheng, T.2    Zhao, Y.3    Jiang, J.4    Wang, Y.5    Guo, L.6    Wang, P.7
  • 57
    • 38149027113 scopus 로고    scopus 로고
    • The research of monthly discharge predictor-corrector model based on wavelet decomposition
    • Zhou HC, Peng Y, Liang GH (2008) The research of monthly discharge predictor-corrector model based on wavelet decomposition. Water Resour Manag 22(2):217–227
    • (2008) Water Resour Manag , vol.22 , Issue.2 , pp. 217-227
    • Zhou, H.C.1    Peng, Y.2    Liang, G.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.