-
1
-
-
33750963656
-
Improved supply chain management based on hybrid demand forecasts
-
Aburto L., Weber R. Improved supply chain management based on hybrid demand forecasts. Appl. Soft Comput. 2007, 7(1):136-144.
-
(2007)
Appl. Soft Comput.
, vol.7
, Issue.1
, pp. 136-144
-
-
Aburto, L.1
Weber, R.2
-
3
-
-
77954315872
-
Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
-
Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renew. Energy 2010, 35(12):2732-2738.
-
(2010)
Renew. Energy
, vol.35
, Issue.12
, pp. 2732-2738
-
-
Cadenas, E.1
Rivera, W.2
-
4
-
-
70449529547
-
Forecasting container throughputs at ports using genetic programming
-
Chen S., Chen J. Forecasting container throughputs at ports using genetic programming. Expert Syst. Appl. 2010, 37(3):2054-2058.
-
(2010)
Expert Syst. Appl.
, vol.37
, Issue.3
, pp. 2054-2058
-
-
Chen, S.1
Chen, J.2
-
5
-
-
0026261936
-
Analysis of univariate time series with connectionist nets: a case study of two classical examples
-
de Groot C., Würtz D. Analysis of univariate time series with connectionist nets: a case study of two classical examples. Neurocomputing 1991, 3(4):177-192.
-
(1991)
Neurocomputing
, vol.3
, Issue.4
, pp. 177-192
-
-
de Groot, C.1
Würtz, D.2
-
6
-
-
53949114438
-
A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
-
Diaz-Robles L.A., Ortega J.C., Fu J.S., Reed G.D., Chow J.C., Watson J.G., Moncada-Herrera J.A. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 2008, 42(35):8331-8340.
-
(2008)
Atmos. Environ.
, vol.42
, Issue.35
, pp. 8331-8340
-
-
Diaz-Robles, L.A.1
Ortega, J.C.2
Fu, J.S.3
Reed, G.D.4
Chow, J.C.5
Watson, J.G.6
Moncada-Herrera, J.A.7
-
7
-
-
84862246137
-
Congestion, port expansion and spatial competition for US container imports
-
Fan L., Wilson W.W., Dahl B. Congestion, port expansion and spatial competition for US container imports. Transp. Res. Part E: Logist. Transp. Rev. 2012, 48(6):1121-1136.
-
(2012)
Transp. Res. Part E: Logist. Transp. Rev.
, vol.48
, Issue.6
, pp. 1121-1136
-
-
Fan, L.1
Wilson, W.W.2
Dahl, B.3
-
8
-
-
0008860811
-
Simulation and forecasting in intermodal container terminal.
-
Gambardella, L.M., Bontempi, G., Taillard, E., Romanengo, D., Raso, G., Piermari, P., 1996. Simulation and forecasting in intermodal container terminal. In: Proceedings of the 8th European Simulation Symposium, pp. 626-630.
-
(1996)
In: Proceedings of the 8th European Simulation Symposium
, pp. 626-630
-
-
Gambardella, L.M.1
Bontempi, G.2
Taillard, E.3
Romanengo, D.4
Raso, G.5
Piermari, P.6
-
9
-
-
84881117735
-
A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port
-
Gosasang V., Chandraprakaikul W., Kiattisin S. A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port. Asian J. Shipp. Logist. 2011, 27(3):463-482.
-
(2011)
Asian J. Shipp. Logist.
, vol.27
, Issue.3
, pp. 463-482
-
-
Gosasang, V.1
Chandraprakaikul, W.2
Kiattisin, S.3
-
10
-
-
0028543366
-
Training feedforward networks with the Marquardt algorithm
-
Hagan M.T., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 1994, 5(6):989-993.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.6
, pp. 989-993
-
-
Hagan, M.T.1
Menhaj, M.B.2
-
11
-
-
0038383172
-
Time-series analysis with neural networks and ARIMA-neural network hybrids
-
Hansen J.V., Nelson R.D. Time-series analysis with neural networks and ARIMA-neural network hybrids. J. Exp. Theor. Artif. Intell. 2003, 15(3):315-330.
-
(2003)
J. Exp. Theor. Artif. Intell.
, vol.15
, Issue.3
, pp. 315-330
-
-
Hansen, J.V.1
Nelson, R.D.2
-
12
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
13
-
-
33846813334
-
Hybrid neural network models for hydrologic time series forecasting
-
Jain A., Kumar A.M. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. 2007, 7(2):585-592.
-
(2007)
Appl. Soft Comput.
, vol.7
, Issue.2
, pp. 585-592
-
-
Jain, A.1
Kumar, A.M.2
-
14
-
-
77953362241
-
Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions
-
Kamarianakis Y., Oliver Gao H., Prastacos P. Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions. Transp. Res. Part C: Emerg. Technol. 2010, 18(5):821-840.
-
(2010)
Transp. Res. Part C: Emerg. Technol.
, vol.18
, Issue.5
, pp. 821-840
-
-
Kamarianakis, Y.1
Oliver Gao, H.2
Prastacos, P.3
-
15
-
-
79951775181
-
Statistical methods versus neural networks in transportation research: differences, similarities and some insights
-
Karlaftis M., Vlahogianni E. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp. Res. Part C: Emerg. Technol. 2011, 19(3):387-399.
-
(2011)
Transp. Res. Part C: Emerg. Technol.
, vol.19
, Issue.3
, pp. 387-399
-
-
Karlaftis, M.1
Vlahogianni, E.2
-
16
-
-
70349453596
-
An artificial neural network (p, d, q) model for timeseries forecasting
-
Khashei M., Bijari M. An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 2010, 37(1):479-489.
-
(2010)
Expert Syst. Appl.
, vol.37
, Issue.1
, pp. 479-489
-
-
Khashei, M.1
Bijari, M.2
-
17
-
-
78751608738
-
A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
-
Khashei M., Bijari M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 2011, 11(2):2664-2675.
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.2
, pp. 2664-2675
-
-
Khashei, M.1
Bijari, M.2
-
18
-
-
33645756818
-
Short-term hourly traffic forecasts using Hong Kong annual traffic census
-
Lam W., Tang Y., Chan K., Tam M. Short-term hourly traffic forecasts using Hong Kong annual traffic census. Transportation 2006, 33(3):291-310.
-
(2006)
Transportation
, vol.33
, Issue.3
, pp. 291-310
-
-
Lam, W.1
Tang, Y.2
Chan, K.3
Tam, M.4
-
19
-
-
0034274926
-
Traffic volume time-series analysis according to the type of road use
-
Lingras P., Sharma S.C., Osborne P., Kalyar I. Traffic volume time-series analysis according to the type of road use. Comput.-Aided Civil Infrastruct. Eng. 2000, 15(5):365-373.
-
(2000)
Comput.-Aided Civil Infrastruct. Eng.
, vol.15
, Issue.5
, pp. 365-373
-
-
Lingras, P.1
Sharma, S.C.2
Osborne, P.3
Kalyar, I.4
-
21
-
-
77950516820
-
A hybrid neural network and ARIMA model for water quality time series prediction
-
Ömer Faruk D. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23(4):586-594.
-
(2010)
Eng. Appl. Artif. Intell.
, vol.23
, Issue.4
, pp. 586-594
-
-
Ömer Faruk, D.1
-
22
-
-
69249202378
-
A comparison of univariate methods for forecasting container throughput volumes
-
Peng W., Chu C. A comparison of univariate methods for forecasting container throughput volumes. Math. Comput. Modell. 2009, 50(7-8):1045-1057.
-
(2009)
Math. Comput. Modell.
, vol.50
, Issue.7-8
, pp. 1045-1057
-
-
Peng, W.1
Chu, C.2
-
23
-
-
0036825523
-
Multiple comparison procedures applied to model selection
-
Pizarro J., Guerrero E., Galindo P.L. Multiple comparison procedures applied to model selection. Neurocomputing 2002, 48(1-4):155-173.
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 155-173
-
-
Pizarro, J.1
Guerrero, E.2
Galindo, P.L.3
-
24
-
-
0003444646
-
Learning internal representations by error propagation
-
MIT Press, Cambridge, MA, D.E. Rumelhart, J.L. McClelland (Eds.)
-
Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Parallel Distributed Processing 1986, 318-362. MIT Press, Cambridge, MA. D.E. Rumelhart, J.L. McClelland (Eds.).
-
(1986)
Parallel Distributed Processing
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
25
-
-
28444472084
-
Evaluation of two modeling methods for generating heavy-truck trips at an intermodal facility by using vessel freight data
-
Sarvareddy P., Al-Deek H., Klodzinski J., Anagnostopoulos G. Evaluation of two modeling methods for generating heavy-truck trips at an intermodal facility by using vessel freight data. Transp. Res. Rec.: J. Transp. Res. Board 2005, 1906(1):113-120.
-
(2005)
Transp. Res. Rec.: J. Transp. Res. Board
, vol.1906
, Issue.1
, pp. 113-120
-
-
Sarvareddy, P.1
Al-Deek, H.2
Klodzinski, J.3
Anagnostopoulos, G.4
-
26
-
-
0033692230
-
Comparison of neural and conventional approaches to mode choice analysis
-
Sayed T., Razavi A. Comparison of neural and conventional approaches to mode choice analysis. J. Comput. Civil Eng. 2000, 14(1):23-30.
-
(2000)
J. Comput. Civil Eng.
, vol.14
, Issue.1
, pp. 23-30
-
-
Sayed, T.1
Razavi, A.2
-
27
-
-
84859416828
-
Evaluation of hybrid forecasting approaches for wind speed and power generation time series
-
Shi J., Guo J., Zheng S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 2012, 16(5):3471-3480.
-
(2012)
Renew. Sustain. Energy Rev.
, vol.16
, Issue.5
, pp. 3471-3480
-
-
Shi, J.1
Guo, J.2
Zheng, S.3
-
29
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. Ser. B (Methodol.) 1974, 111-147.
-
(1974)
J. Roy. Stat. Soc. Ser. B (Methodol.)
, pp. 111-147
-
-
Stone, M.1
-
30
-
-
27744467138
-
A comparative study of autoregressive neural network hybrids
-
Taskaya-Temizel T., Casey M.C. A comparative study of autoregressive neural network hybrids. Neural Networks 2005, 18(5):781-789.
-
(2005)
Neural Networks
, vol.18
, Issue.5
, pp. 781-789
-
-
Taskaya-Temizel, T.1
Casey, M.C.2
-
31
-
-
0036140323
-
Combining neural network model with seasonal time series ARIMA model
-
Tseng F., Yu H., Tzeng G. Combining neural network model with seasonal time series ARIMA model. Technol. Forecast. Soc. Chang. 2002, 69(1):71-87.
-
(2002)
Technol. Forecast. Soc. Chang.
, vol.69
, Issue.1
, pp. 71-87
-
-
Tseng, F.1
Yu, H.2
Tzeng, G.3
-
32
-
-
4444369422
-
Short-term traffic forecasting: overview of objectives and methods
-
Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transp. Rev. 2004, 24(5):533-557.
-
(2004)
Transp. Rev.
, vol.24
, Issue.5
, pp. 533-557
-
-
Vlahogianni, E.I.1
Golias, J.C.2
Karlaftis, M.G.3
-
33
-
-
23844513726
-
Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
-
Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C: Emerg. Technol. 2005, 13(3):211-234.
-
(2005)
Transp. Res. Part C: Emerg. Technol.
, vol.13
, Issue.3
, pp. 211-234
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Golias, J.C.3
-
34
-
-
33747398667
-
An extreme value based neural clustering approach for identifying traffic states
-
IEEE
-
Vlahogianni, E.I., Karlaftis, M.G., Stathopoulos, A., 2005b. An extreme value based neural clustering approach for identifying traffic states. In: Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, pp. 320-325.
-
(2005)
In: Intelligent Transportation Systems, 2005. Proceedings. 2005
, pp. 320-325
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Stathopoulos, A.3
-
35
-
-
84858745887
-
Stock index forecasting based on a hybrid model
-
Wang J., Wang J., Zhang Z., Guo S. Stock index forecasting based on a hybrid model. Omega 2012, 40(6):758-766.
-
(2012)
Omega
, vol.40
, Issue.6
, pp. 758-766
-
-
Wang, J.1
Wang, J.2
Zhang, Z.3
Guo, S.4
-
36
-
-
80155154044
-
Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
-
Wei Y., Chen M. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C: Emerg. Technol. 2012, 21(1):148-162.
-
(2012)
Transp. Res. Part C: Emerg. Technol.
, vol.21
, Issue.1
, pp. 148-162
-
-
Wei, Y.1
Chen, M.2
-
37
-
-
0037243071
-
Time series forecasting using a hybrid ARIMA and neural network model
-
Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
-
(2003)
Neurocomputing
, vol.50
, pp. 159-175
-
-
Zhang, G.P.1
-
38
-
-
0003123930
-
Forecasting with artificial neural networks: the state of the art
-
Zhang G., Eddy Patuwo B., Y Hu M. Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 1998, 14(1):35-62.
-
(1998)
Int. J. Forecast.
, vol.14
, Issue.1
, pp. 35-62
-
-
Zhang, G.1
Eddy Patuwo, B.2
Hu, M.Y.3
|