메뉴 건너뛰기




Volumn 67, Issue , 2014, Pages 1-13

Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting

Author keywords

Artificial neural networks; Hybrid models; Inspection forecasting; SARIMA

Indexed keywords

DECISION MAKING; INSPECTION; NEURAL NETWORKS;

EID: 84899860927     PISSN: 13665545     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tre.2014.03.009     Document Type: Article
Times cited : (91)

References (38)
  • 1
    • 33750963656 scopus 로고    scopus 로고
    • Improved supply chain management based on hybrid demand forecasts
    • Aburto L., Weber R. Improved supply chain management based on hybrid demand forecasts. Appl. Soft Comput. 2007, 7(1):136-144.
    • (2007) Appl. Soft Comput. , vol.7 , Issue.1 , pp. 136-144
    • Aburto, L.1    Weber, R.2
  • 3
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renew. Energy 2010, 35(12):2732-2738.
    • (2010) Renew. Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 4
    • 70449529547 scopus 로고    scopus 로고
    • Forecasting container throughputs at ports using genetic programming
    • Chen S., Chen J. Forecasting container throughputs at ports using genetic programming. Expert Syst. Appl. 2010, 37(3):2054-2058.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.3 , pp. 2054-2058
    • Chen, S.1    Chen, J.2
  • 5
    • 0026261936 scopus 로고
    • Analysis of univariate time series with connectionist nets: a case study of two classical examples
    • de Groot C., Würtz D. Analysis of univariate time series with connectionist nets: a case study of two classical examples. Neurocomputing 1991, 3(4):177-192.
    • (1991) Neurocomputing , vol.3 , Issue.4 , pp. 177-192
    • de Groot, C.1    Würtz, D.2
  • 6
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • Diaz-Robles L.A., Ortega J.C., Fu J.S., Reed G.D., Chow J.C., Watson J.G., Moncada-Herrera J.A. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 2008, 42(35):8331-8340.
    • (2008) Atmos. Environ. , vol.42 , Issue.35 , pp. 8331-8340
    • Diaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 7
    • 84862246137 scopus 로고    scopus 로고
    • Congestion, port expansion and spatial competition for US container imports
    • Fan L., Wilson W.W., Dahl B. Congestion, port expansion and spatial competition for US container imports. Transp. Res. Part E: Logist. Transp. Rev. 2012, 48(6):1121-1136.
    • (2012) Transp. Res. Part E: Logist. Transp. Rev. , vol.48 , Issue.6 , pp. 1121-1136
    • Fan, L.1    Wilson, W.W.2    Dahl, B.3
  • 9
    • 84881117735 scopus 로고    scopus 로고
    • A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port
    • Gosasang V., Chandraprakaikul W., Kiattisin S. A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port. Asian J. Shipp. Logist. 2011, 27(3):463-482.
    • (2011) Asian J. Shipp. Logist. , vol.27 , Issue.3 , pp. 463-482
    • Gosasang, V.1    Chandraprakaikul, W.2    Kiattisin, S.3
  • 10
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 11
    • 0038383172 scopus 로고    scopus 로고
    • Time-series analysis with neural networks and ARIMA-neural network hybrids
    • Hansen J.V., Nelson R.D. Time-series analysis with neural networks and ARIMA-neural network hybrids. J. Exp. Theor. Artif. Intell. 2003, 15(3):315-330.
    • (2003) J. Exp. Theor. Artif. Intell. , vol.15 , Issue.3 , pp. 315-330
    • Hansen, J.V.1    Nelson, R.D.2
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A., Kumar A.M. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. 2007, 7(2):585-592.
    • (2007) Appl. Soft Comput. , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 14
    • 77953362241 scopus 로고    scopus 로고
    • Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions
    • Kamarianakis Y., Oliver Gao H., Prastacos P. Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions. Transp. Res. Part C: Emerg. Technol. 2010, 18(5):821-840.
    • (2010) Transp. Res. Part C: Emerg. Technol. , vol.18 , Issue.5 , pp. 821-840
    • Kamarianakis, Y.1    Oliver Gao, H.2    Prastacos, P.3
  • 15
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis M., Vlahogianni E. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transp. Res. Part C: Emerg. Technol. 2011, 19(3):387-399.
    • (2011) Transp. Res. Part C: Emerg. Technol. , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.1    Vlahogianni, E.2
  • 16
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network (p, d, q) model for timeseries forecasting
    • Khashei M., Bijari M. An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 2010, 37(1):479-489.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 17
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • Khashei M., Bijari M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 2011, 11(2):2664-2675.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 18
    • 33645756818 scopus 로고    scopus 로고
    • Short-term hourly traffic forecasts using Hong Kong annual traffic census
    • Lam W., Tang Y., Chan K., Tam M. Short-term hourly traffic forecasts using Hong Kong annual traffic census. Transportation 2006, 33(3):291-310.
    • (2006) Transportation , vol.33 , Issue.3 , pp. 291-310
    • Lam, W.1    Tang, Y.2    Chan, K.3    Tam, M.4
  • 20
  • 21
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Ömer Faruk D. A hybrid neural network and ARIMA model for water quality time series prediction. Eng. Appl. Artif. Intell. 2010, 23(4):586-594.
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , Issue.4 , pp. 586-594
    • Ömer Faruk, D.1
  • 22
    • 69249202378 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting container throughput volumes
    • Peng W., Chu C. A comparison of univariate methods for forecasting container throughput volumes. Math. Comput. Modell. 2009, 50(7-8):1045-1057.
    • (2009) Math. Comput. Modell. , vol.50 , Issue.7-8 , pp. 1045-1057
    • Peng, W.1    Chu, C.2
  • 23
    • 0036825523 scopus 로고    scopus 로고
    • Multiple comparison procedures applied to model selection
    • Pizarro J., Guerrero E., Galindo P.L. Multiple comparison procedures applied to model selection. Neurocomputing 2002, 48(1-4):155-173.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 155-173
    • Pizarro, J.1    Guerrero, E.2    Galindo, P.L.3
  • 24
    • 0003444646 scopus 로고
    • Learning internal representations by error propagation
    • MIT Press, Cambridge, MA, D.E. Rumelhart, J.L. McClelland (Eds.)
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Parallel Distributed Processing 1986, 318-362. MIT Press, Cambridge, MA. D.E. Rumelhart, J.L. McClelland (Eds.).
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 25
    • 28444472084 scopus 로고    scopus 로고
    • Evaluation of two modeling methods for generating heavy-truck trips at an intermodal facility by using vessel freight data
    • Sarvareddy P., Al-Deek H., Klodzinski J., Anagnostopoulos G. Evaluation of two modeling methods for generating heavy-truck trips at an intermodal facility by using vessel freight data. Transp. Res. Rec.: J. Transp. Res. Board 2005, 1906(1):113-120.
    • (2005) Transp. Res. Rec.: J. Transp. Res. Board , vol.1906 , Issue.1 , pp. 113-120
    • Sarvareddy, P.1    Al-Deek, H.2    Klodzinski, J.3    Anagnostopoulos, G.4
  • 26
    • 0033692230 scopus 로고    scopus 로고
    • Comparison of neural and conventional approaches to mode choice analysis
    • Sayed T., Razavi A. Comparison of neural and conventional approaches to mode choice analysis. J. Comput. Civil Eng. 2000, 14(1):23-30.
    • (2000) J. Comput. Civil Eng. , vol.14 , Issue.1 , pp. 23-30
    • Sayed, T.1    Razavi, A.2
  • 27
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • Shi J., Guo J., Zheng S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 2012, 16(5):3471-3480.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , Issue.5 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 28
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and nonparametric models for traffic flow forecasting
    • Smith B.L., Williams B.M., Keith Oswald R. Comparison of parametric and nonparametric models for traffic flow forecasting. Transp. Res. Part C: Emerg. Technol. 2002, 10(4):303-321.
    • (2002) Transp. Res. Part C: Emerg. Technol. , vol.10 , Issue.4 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Keith Oswald, R.3
  • 29
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. Ser. B (Methodol.) 1974, 111-147.
    • (1974) J. Roy. Stat. Soc. Ser. B (Methodol.) , pp. 111-147
    • Stone, M.1
  • 30
    • 27744467138 scopus 로고    scopus 로고
    • A comparative study of autoregressive neural network hybrids
    • Taskaya-Temizel T., Casey M.C. A comparative study of autoregressive neural network hybrids. Neural Networks 2005, 18(5):781-789.
    • (2005) Neural Networks , vol.18 , Issue.5 , pp. 781-789
    • Taskaya-Temizel, T.1    Casey, M.C.2
  • 31
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • Tseng F., Yu H., Tzeng G. Combining neural network model with seasonal time series ARIMA model. Technol. Forecast. Soc. Chang. 2002, 69(1):71-87.
    • (2002) Technol. Forecast. Soc. Chang. , vol.69 , Issue.1 , pp. 71-87
    • Tseng, F.1    Yu, H.2    Tzeng, G.3
  • 32
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transp. Rev. 2004, 24(5):533-557.
    • (2004) Transp. Rev. , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 33
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transp. Res. Part C: Emerg. Technol. 2005, 13(3):211-234.
    • (2005) Transp. Res. Part C: Emerg. Technol. , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 35
    • 84858745887 scopus 로고    scopus 로고
    • Stock index forecasting based on a hybrid model
    • Wang J., Wang J., Zhang Z., Guo S. Stock index forecasting based on a hybrid model. Omega 2012, 40(6):758-766.
    • (2012) Omega , vol.40 , Issue.6 , pp. 758-766
    • Wang, J.1    Wang, J.2    Zhang, Z.3    Guo, S.4
  • 36
    • 80155154044 scopus 로고    scopus 로고
    • Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks
    • Wei Y., Chen M. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks. Transp. Res. Part C: Emerg. Technol. 2012, 21(1):148-162.
    • (2012) Transp. Res. Part C: Emerg. Technol. , vol.21 , Issue.1 , pp. 148-162
    • Wei, Y.1    Chen, M.2
  • 37
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 38
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Eddy Patuwo B., Y Hu M. Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 1998, 14(1):35-62.
    • (1998) Int. J. Forecast. , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.