메뉴 건너뛰기




Volumn 121, Issue , 2013, Pages 470-480

A new hybrid artificial neural networks for rainfall-runoff process modeling

Author keywords

Data clustering; Data pre processing; Genetic algorithms; Levenberg Marquardt algorithm; Rainfall runoff modeling

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; DATA CLUSTERING; DATA PREPROCESSING; HYBRID ARTIFICIAL NEURAL NETWORK; HYBRID INTELLIGENT MODEL; INPUT VARIABLES SELECTIONS; LEVENBERG-MARQUARDT ALGORITHM; RAINFALL-RUNOFF MODELING;

EID: 84884167501     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.05.023     Document Type: Article
Times cited : (115)

References (89)
  • 1
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modeling
    • Solomatine D.P., Dulal K.N. Model trees as an alternative to neural networks in rainfall-runoff modeling. Hydrol. Sci. J. 2003, 48:3399-3411.
    • (2003) Hydrol. Sci. J. , vol.48 , pp. 3399-3411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 2
    • 80051735029 scopus 로고    scopus 로고
    • Artificial neural network approach for mapping contrasting tillage practices
    • Sudheer K.P., Gowda P.H., Chaubey I., Howell T.A. Artificial neural network approach for mapping contrasting tillage practices. Remote Sensing 2010, 2:579-590.
    • (2010) Remote Sensing , vol.2 , pp. 579-590
    • Sudheer, K.P.1    Gowda, P.H.2    Chaubey, I.3    Howell, T.A.4
  • 3
    • 36649032078 scopus 로고    scopus 로고
    • Rainfall-runoff modeling through hybrid intelligent system
    • Nayak P.C., Sudheer K.P., Jain S.K. Rainfall-runoff modeling through hybrid intelligent system. Water Resour. Res. 2007, 43:W07415. 10.1029/2006WR004930.
    • (2007) Water Resour. Res. , vol.43
    • Nayak, P.C.1    Sudheer, K.P.2    Jain, S.K.3
  • 4
    • 84984516669 scopus 로고
    • Combining forecasts-twenty years later
    • Granger C.W.J. Combining forecasts-twenty years later. J. Forecast. 1989, 8:167-173.
    • (1989) J. Forecast. , vol.8 , pp. 167-173
    • Granger, C.W.J.1
  • 5
    • 0012666588 scopus 로고
    • Combined neural networks for time series analysis
    • Ginzburg I., Horn D. Combined neural networks for time series analysis. Adv. Neural Inf. Process. Syst. 1994, 6:224-231.
    • (1994) Adv. Neural Inf. Process. Syst. , vol.6 , pp. 224-231
    • Ginzburg, I.1    Horn, D.2
  • 6
    • 84863127382 scopus 로고    scopus 로고
    • Time series modeling of river flow using wavelet neural networks
    • Krishna B., Satyaji Rao Y.R., Nayak P.C. Time series modeling of river flow using wavelet neural networks. J. Water Resour. Prot. 2011, 3:50-59.
    • (2011) J. Water Resour. Prot. , vol.3 , pp. 50-59
    • Krishna, B.1    Satyaji Rao, Y.R.2    Nayak, P.C.3
  • 7
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process
    • Nourani V., Kisi O., Komasi K. Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 2011, 402:41-59.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, K.3
  • 8
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural Networks for ensemble stream flow prediction
    • Jeong D., Kim Y.O. Rainfall-runoff models using artificial neural Networks for ensemble stream flow prediction. Hydrol. Processes 2005, 19:3819-3835.
    • (2005) Hydrol. Processes , vol.19 , pp. 3819-3835
    • Jeong, D.1    Kim, Y.O.2
  • 9
    • 33845872549 scopus 로고    scopus 로고
    • River suspended sediment modeling using fuzzy logic approach
    • Kisi O., Karahan M.E., Sen Z. River suspended sediment modeling using fuzzy logic approach. Hydrol. Processes 2006, 20:204351-204362.
    • (2006) Hydrol. Processes , vol.20 , pp. 204351-204362
    • Kisi, O.1    Karahan, M.E.2    Sen, Z.3
  • 10
    • 67349144155 scopus 로고    scopus 로고
    • Data clustering and fuzzy neural network for sales forecasting: a case study in printed circuit board industry
    • Chang P.C., Liu C.H., Fan C.Y. Data clustering and fuzzy neural network for sales forecasting: a case study in printed circuit board industry. Knowl. Based Syst. 2009, 22:344-355.
    • (2009) Knowl. Based Syst. , vol.22 , pp. 344-355
    • Chang, P.C.1    Liu, C.H.2    Fan, C.Y.3
  • 11
    • 54949111696 scopus 로고    scopus 로고
    • The adaptive neuro-fuzzy model for forecasting the domestic debt
    • Keles A., Kolcak M., Keles A. The adaptive neuro-fuzzy model for forecasting the domestic debt. Knowl. Based Syst. 2008, 21:951-957.
    • (2008) Knowl. Based Syst. , vol.21 , pp. 951-957
    • Keles, A.1    Kolcak, M.2    Keles, A.3
  • 12
    • 33745877264 scopus 로고    scopus 로고
    • Neural network and GA approaches for dwelling fire occurrence prediction
    • Yang L., Dawson C., Brown M., Gell M. Neural network and GA approaches for dwelling fire occurrence prediction. Knowl. Based Syst. 2006, 19:213-219.
    • (2006) Knowl. Based Syst. , vol.19 , pp. 213-219
    • Yang, L.1    Dawson, C.2    Brown, M.3    Gell, M.4
  • 13
    • 33746903994 scopus 로고    scopus 로고
    • A neural network approach to predicting stock exchange movements using external factors
    • O'Connor N., Madden M.G. A neural network approach to predicting stock exchange movements using external factors. Knowl. Based Syst. 2006, 19:371-378.
    • (2006) Knowl. Based Syst. , vol.19 , pp. 371-378
    • O'Connor, N.1    Madden, M.G.2
  • 14
    • 0036643223 scopus 로고    scopus 로고
    • Residential property price time series forecasting with neural networks
    • Wilson I., Paris S., Ware J., Jenkins D. Residential property price time series forecasting with neural networks. Knowl. Based Syst. 2002, 15:335-341.
    • (2002) Knowl. Based Syst. , vol.15 , pp. 335-341
    • Wilson, I.1    Paris, S.2    Ware, J.3    Jenkins, D.4
  • 15
    • 79953700539 scopus 로고    scopus 로고
    • An improved sales forecasting approach by the integration of genetic fuzzy systems and data clustering: case study of printed circuit board
    • Hadavandi E., Shavandi H., Ghanbari A. An improved sales forecasting approach by the integration of genetic fuzzy systems and data clustering: case study of printed circuit board. Expert Syst. Appl. 2011, 38:9392-9399.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 9392-9399
    • Hadavandi, E.1    Shavandi, H.2    Ghanbari, A.3
  • 16
    • 84655167886 scopus 로고    scopus 로고
    • Developing a hybrid artificial intelligence model for outpatient visit forecasting in hospitals
    • E. Hadavandi, H. Shavandi, A. Ghanbari, S. Abbasian, Developing a hybrid artificial intelligence model for outpatient visit forecasting in hospitals, Appl. Soft Comput. 12 (2) (2012) 700-711.
    • (2012) Appl. Soft Comput , vol.12 , Issue.2 , pp. 700-711
    • Hadavandi, E.1    Shavandi, H.2    Ghanbari, A.3    Abbasian, S.4
  • 17
    • 79551685695 scopus 로고    scopus 로고
    • Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
    • Shen W., Guo X., Wu C., Wu D. Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowl. Based Syst. 2011, 24:378-385.
    • (2011) Knowl. Based Syst. , vol.24 , pp. 378-385
    • Shen, W.1    Guo, X.2    Wu, C.3    Wu, D.4
  • 19
    • 84885434031 scopus 로고    scopus 로고
    • ANN and ANFIS models for COP prediction of a water purification process integrated heat to a transformer with energy recycling
    • El Hamzaoui Y., Hernandez J.A., Roman A.G., Ramirez J.A. ANN and ANFIS models for COP prediction of a water purification process integrated heat to a transformer with energy recycling. Chem. Product Process Model. 2012, 7:1-25.
    • (2012) Chem. Product Process Model. , vol.7 , pp. 1-25
    • El Hamzaoui, Y.1    Hernandez, J.A.2    Roman, A.G.3    Ramirez, J.A.4
  • 20
    • 79960181155 scopus 로고    scopus 로고
    • Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network
    • El Hamzaoui Y., Hernandez J.A., Silva-Martinez S., Bassam A., Alvarez A., Lizama-Bahena C. Optimal performance of COD removal during aqueous treatment of alazine and gesaprim commercial herbicides by direct and inverse neural network. Desalination 2011, 277:325-337.
    • (2011) Desalination , vol.277 , pp. 325-337
    • El Hamzaoui, Y.1    Hernandez, J.A.2    Silva-Martinez, S.3    Bassam, A.4    Alvarez, A.5    Lizama-Bahena, C.6
  • 21
    • 79955121804 scopus 로고    scopus 로고
    • An empowered adaptive neuro-fuzzy inference system using self-organizing map clustering to predict mass transfer kinetics in deep-fat frying of ostrich meat plates
    • Amiryousefi M.R., Mohebbi M., Khodaiyan F., Asadi S. An empowered adaptive neuro-fuzzy inference system using self-organizing map clustering to predict mass transfer kinetics in deep-fat frying of ostrich meat plates. Comput. Electron. Agric. 2011, 76(1):89-95.
    • (2011) Comput. Electron. Agric. , vol.76 , Issue.1 , pp. 89-95
    • Amiryousefi, M.R.1    Mohebbi, M.2    Khodaiyan, F.3    Asadi, S.4
  • 22
    • 77958199170 scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: application
    • Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: application. Hydrol. Earth Syst. Sci. 1943-1961, 14.
    • (1943) Hydrol. Earth Syst. Sci. , vol.14
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 23
    • 84885434783 scopus 로고    scopus 로고
    • Search for optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using artificial neural network inverse solved by genetic and particle swarm algorithms
    • El Hamzaoui Y., Hernandez J.A., Roman A.G.Ramírez Search for optimum operating conditions for a water purification process integrated to a heat transformer with energy recycling using artificial neural network inverse solved by genetic and particle swarm algorithms. Chem. Product Process Model. 2012, 7:1-25.
    • (2012) Chem. Product Process Model. , vol.7 , pp. 1-25
    • El Hamzaoui, Y.1    Hernandez, J.A.2    Roman, A.G.R.3
  • 24
    • 28344455955 scopus 로고    scopus 로고
    • An artificial neural network model for generating hydrograph from hydro-meteorological parameters
    • Ahmad S., Simonovic P.S. An artificial neural network model for generating hydrograph from hydro-meteorological parameters. J. Hydrol. 2005, 315:236-251.
    • (2005) J. Hydrol. , vol.315 , pp. 236-251
    • Ahmad, S.1    Simonovic, P.S.2
  • 25
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: comparing and combining conceptual and neural networks models
    • Nilsson P., Uvo C.B., Berndtsson R. Monthly runoff simulation: comparing and combining conceptual and neural networks models. J. Hydrol. 2006, 321:344-363.
    • (2006) J. Hydrol. , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 26
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks technique: a Blue Nile catchment case study
    • Antar M.A., Elassiouti I., Alam M.N. Rainfall-runoff modeling using artificial neural networks technique: a Blue Nile catchment case study. Hydrol. Processes 2006, 20:51201-51216.
    • (2006) Hydrol. Processes , vol.20 , pp. 51201-51216
    • Antar, M.A.1    Elassiouti, I.2    Alam, M.N.3
  • 27
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall-runoff models
    • Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrol. Processes 2004, 18:571-581.
    • (2004) Hydrol. Processes , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 28
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network: comparison of networks types
    • Senthil Kumar A.R., Sudheer K.P., Jain S.K., Agarwal P.K. Rainfall-runoff modeling using artificial neural network: comparison of networks types. Hydrol. Processes 2004, 19:61277-61291.
    • (2004) Hydrol. Processes , vol.19 , pp. 61277-61291
    • Senthil Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 29
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • 192-1
    • Leahy P., Kiely G., Corcoran G. Structural optimisation and input selection of an artificial neural network for river level prediction. J. Hydrol. 2008, 355(192-1):201.
    • (2008) J. Hydrol. , vol.355 , pp. 201
    • Leahy, P.1    Kiely, G.2    Corcoran, G.3
  • 30
    • 33645996016 scopus 로고    scopus 로고
    • Symbiotic adaptive neuro-evolution applied to rainfall-runoff modeling in northern England
    • Dawson C.W., See L.M., Abrahart R., Heppenstall A.J. Symbiotic adaptive neuro-evolution applied to rainfall-runoff modeling in northern England. Neural Netw. 2006, 19:236-247.
    • (2006) Neural Netw. , vol.19 , pp. 236-247
    • Dawson, C.W.1    See, L.M.2    Abrahart, R.3    Heppenstall, A.J.4
  • 31
    • 80052953523 scopus 로고    scopus 로고
    • Flood simulation using parallel genetic algorithm integrated wavelet neural networks
    • Wang Y., Wang H., Lei X., Jiang Y., Song X. Flood simulation using parallel genetic algorithm integrated wavelet neural networks. Neurocomputing 2011, 74:172734-172744.
    • (2011) Neurocomputing , vol.74 , pp. 172734-172744
    • Wang, Y.1    Wang, H.2    Lei, X.3    Jiang, Y.4    Song, X.5
  • 32
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer K.P., Nayak P.C., Ramasastri K.S. Improving peak flow estimates in artificial neural network river flow models. Hydrol. Processes 2003, 17:3677-3686.
    • (2003) Hydrol. Processes , vol.17 , pp. 3677-3686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 33
    • 84885433220 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik K. Multilayer feed-forward networks are universal approximators. Neural Netw. 1988, 2:5359-5366.
    • (1988) Neural Netw. , vol.2 , pp. 5359-5366
    • Hornik, K.1
  • 34
    • 84884166330 scopus 로고    scopus 로고
    • Artificial Neural Networks in hydrology 1: hydrology application
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology Artificial Neural Networks in hydrology 1: hydrology application. J. Hydrol. Eng. 2000, 5:2124-2137.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 2124-2137
  • 35
    • 0034564603 scopus 로고    scopus 로고
    • Artificial neural networks: fundamentals, computing, design, and applications
    • Basheer I.A., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and applications. J. Microbiol. Methods 2000, 43:3-31.
    • (2000) J. Microbiol. Methods , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 36
    • 84885432235 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan M., Menhaj M. Training feedforward networks with the marquardt algorithm. IEEE TNN 1994, 5:6989-6993.
    • (1994) IEEE TNN , vol.5 , pp. 6989-6993
    • Hagan, M.1    Menhaj, M.2
  • 37
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X. Evolving artificial neural networks. Proc. IEEE 87 1999.
    • (1999) Proc. IEEE 87
    • Yao, X.1
  • 39
    • 84866488723 scopus 로고    scopus 로고
    • Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction
    • Asadi S., Hadavandi E., Mehmanpazir F., Nakhostin M.M. Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction. Knowl. Based Syst. 2012, 35:245-258.
    • (2012) Knowl. Based Syst. , vol.35 , pp. 245-258
    • Asadi, S.1    Hadavandi, E.2    Mehmanpazir, F.3    Nakhostin, M.M.4
  • 40
    • 47849130439 scopus 로고    scopus 로고
    • Finding optimal neural network architecture using genetic algorithms
    • Fiszelew A., Britos P., Ochoa A., Merlino H. Finding optimal neural network architecture using genetic algorithms. Res. Comput. Sci. 2007, 27:15-24.
    • (2007) Res. Comput. Sci. , vol.27 , pp. 15-24
    • Fiszelew, A.1    Britos, P.2    Ochoa, A.3    Merlino, H.4
  • 41
    • 25144464662 scopus 로고    scopus 로고
    • Knowledge discovery using a neural network simultaneous optimization algorithm on a real world
    • Sexton R., McMurtrey S., Cleavenger D. Knowledge discovery using a neural network simultaneous optimization algorithm on a real world. Eur. J. Oper. Res. 2006, 168:1009-1018.
    • (2006) Eur. J. Oper. Res. , vol.168 , pp. 1009-1018
    • Sexton, R.1    McMurtrey, S.2    Cleavenger, D.3
  • 43
    • 1642491872 scopus 로고    scopus 로고
    • Improving decision effectiveness of artificial neural networks: a modified genetic algorithm
    • Sexton R., Sriram R., Etheridge H. Improving decision effectiveness of artificial neural networks: a modified genetic algorithm. Decis. Sci. 2003, 34:421-442.
    • (2003) Decis. Sci. , vol.34 , pp. 421-442
    • Sexton, R.1    Sriram, R.2    Etheridge, H.3
  • 44
    • 0031999703 scopus 로고    scopus 로고
    • Toward global optimization of neural networks: a comparison of the genetic algorithm
    • Sexton R., Dorsey R., Johnson J. Toward global optimization of neural networks: a comparison of the genetic algorithm. Decis. Support Syst. 1998, 22:171-185.
    • (1998) Decis. Support Syst. , vol.22 , pp. 171-185
    • Sexton, R.1    Dorsey, R.2    Johnson, J.3
  • 45
    • 84952507313 scopus 로고
    • Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features
    • Dorsey R., Mayer W. Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. J. Bus. Econ. Stat. 1995, 1:53-66.
    • (1995) J. Bus. Econ. Stat. , vol.1 , pp. 53-66
    • Dorsey, R.1    Mayer, W.2
  • 47
    • 16244419405 scopus 로고    scopus 로고
    • Evolving neural network for printed circuit board sales forecasting
    • Chang P.C., Wang Y.W., Tsai C.Y. Evolving neural network for printed circuit board sales forecasting. Expert Syst. Appl. 2005, 29:83-92.
    • (2005) Expert Syst. Appl. , vol.29 , pp. 83-92
    • Chang, P.C.1    Wang, Y.W.2    Tsai, C.Y.3
  • 48
    • 0346961244 scopus 로고    scopus 로고
    • A decision support system for order selection in electronic commerce based on fuzzy neural network supported by real-coded genetic algorithm
    • Kuo R.J., Chen J.A. A decision support system for order selection in electronic commerce based on fuzzy neural network supported by real-coded genetic algorithm. Expert Syst. Appl. 2004, 26:141-154.
    • (2004) Expert Syst. Appl. , vol.26 , pp. 141-154
    • Kuo, R.J.1    Chen, J.A.2
  • 49
    • 0034316975 scopus 로고    scopus 로고
    • Comparative evaluation of genetic algorithm and backpropagation for training neural networks
    • Sexton R.S., Gupta J.N. Comparative evaluation of genetic algorithm and backpropagation for training neural networks. Inf. Sci. 2000, 129:45-59.
    • (2000) Inf. Sci. , vol.129 , pp. 45-59
    • Sexton, R.S.1    Gupta, J.N.2
  • 50
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y.H., Chang F.J. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 2009, 367:125-137.
    • (2009) J. Hydrol. , vol.367 , pp. 125-137
    • Chen, Y.H.1    Chang, F.J.2
  • 51
    • 80052028861 scopus 로고    scopus 로고
    • Optimizing neural networks for river flow forecasting-evolutionary computation methods versus Levenberg-Marquardt approach
    • Piotrowski A.P., Napiorkowski J.J. Optimizing neural networks for river flow forecasting-evolutionary computation methods versus Levenberg-Marquardt approach. J. Hydrol. 2011, 407:12-27.
    • (2011) J. Hydrol. , vol.407 , pp. 12-27
    • Piotrowski, A.P.1    Napiorkowski, J.J.2
  • 52
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration
    • Cheng C.T., Ou C.P., Chau K.W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. J. Hydrol. 2002, 268:72-86.
    • (2002) J. Hydrol. , vol.268 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 53
    • 1642322605 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques
    • Jain A., Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques. Water Resour. 2004, 40(4):W04302. 10.1029/2003WR00.
    • (2004) Water Resour. , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 54
    • 58749115999 scopus 로고    scopus 로고
    • Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting
    • Sedki A., Ouazar D., El Mazoudi E. Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting. Expert Syst. Appl. 2009, 36:4523-4527.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4523-4527
    • Sedki, A.1    Ouazar, D.2    El Mazoudi, E.3
  • 55
    • 0032599451 scopus 로고    scopus 로고
    • Time series prediction with genetic algorithm designed neural networks: an experimental comparison with modern statistical models
    • Hansen J.V., McDonald J.B., Nelson R.D. Time series prediction with genetic algorithm designed neural networks: an experimental comparison with modern statistical models. Comput. Intell. 1999, 15:3171-3184.
    • (1999) Comput. Intell. , vol.15 , pp. 3171-3184
    • Hansen, J.V.1    McDonald, J.B.2    Nelson, R.D.3
  • 56
    • 0346848886 scopus 로고    scopus 로고
    • Use of genetic algorithm for neural network to predict community-acquired pneumonia
    • Heckerling P.S., Gerber B.S., Tape T.G., Wigton R.S. Use of genetic algorithm for neural network to predict community-acquired pneumonia. Artif. Intell. Med. 2004, 30:71-84.
    • (2004) Artif. Intell. Med. , vol.30 , pp. 71-84
    • Heckerling, P.S.1    Gerber, B.S.2    Tape, T.G.3    Wigton, R.S.4
  • 57
    • 58749094998 scopus 로고    scopus 로고
    • Surveying stock market forecasting techniques-Part II: soft computing methods
    • Atsalakis G.S., Valavanis K.P. Surveying stock market forecasting techniques-Part II: soft computing methods. Expert Syst. Appl. 2009, 36:5932-5941.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 5932-5941
    • Atsalakis, G.S.1    Valavanis, K.P.2
  • 58
    • 0033110487 scopus 로고    scopus 로고
    • Modular neural networks: a survey
    • Auda G., Kamel M. Modular neural networks: a survey. Int. J. Neural Syst. 1999, 9:129-151.
    • (1999) Int. J. Neural Syst. , vol.9 , pp. 129-151
    • Auda, G.1    Kamel, M.2
  • 60
    • 84866414145 scopus 로고    scopus 로고
    • A hybrid fuzzy intelligent agent-based system for stock price prediction
    • FazelZarandi M.H., Hadavandi Esmaeil, Turksen I.B. A hybrid fuzzy intelligent agent-based system for stock price prediction. Int. J. Intell. Syst. 2012, 947-969.
    • (2012) Int. J. Intell. Syst. , pp. 947-969
    • FazelZarandi, M.H.1    Hadavandi, E.2    Turksen, I.B.3
  • 61
    • 0000480869 scopus 로고
    • Efficient capital markets: a review of theory and empirical work
    • Fama E.F. Efficient capital markets: a review of theory and empirical work. J. Finance 1970, 25:383-417.
    • (1970) J. Finance , vol.25 , pp. 383-417
    • Fama, E.F.1
  • 62
    • 84855897207 scopus 로고    scopus 로고
    • A new hybrid for improvement of auto-regressive integrated moving average models applying particle swarm optimization
    • Asadi S., Tavakoli A., Hejazi S.R. A new hybrid for improvement of auto-regressive integrated moving average models applying particle swarm optimization. Expert Syst. Appl. 2012, 39:5332-5337.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 5332-5337
    • Asadi, S.1    Tavakoli, A.2    Hejazi, S.R.3
  • 63
    • 44449171970 scopus 로고    scopus 로고
    • Improved estimation of electricity demand function by integration of fuzzy system and data mining approach
    • Azadeh A., Saberi M., Ghaderi S., Gitiforouz A., Ebrahimipour V. Improved estimation of electricity demand function by integration of fuzzy system and data mining approach. Energy Convers. Manage. 2008, 49:2165-2177.
    • (2008) Energy Convers. Manage. , vol.49 , pp. 2165-2177
    • Azadeh, A.1    Saberi, M.2    Ghaderi, S.3    Gitiforouz, A.4    Ebrahimipour, V.5
  • 64
    • 67349242422 scopus 로고    scopus 로고
    • A filter model for feature subset selection based on genetic algorithm
    • ElAlami M.E. A filter model for feature subset selection based on genetic algorithm. Knowl. Based Syst. 2009, 22:356-362.
    • (2009) Knowl. Based Syst. , vol.22 , pp. 356-362
    • ElAlami, M.E.1
  • 65
    • 34447620283 scopus 로고    scopus 로고
    • Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis
    • Zhang Y.X. Artificial neural networks based on principal component analysis input selection for clinical pattern recognition analysis. Talanta 2007, 73:68-75.
    • (2007) Talanta , vol.73 , pp. 68-75
    • Zhang, Y.X.1
  • 68
    • 78049526939 scopus 로고    scopus 로고
    • Rolling element bearing fault detection in industrial environments based on a K-means clustering approach
    • Yiakopoulos C.T., Gryllias K.C., Antoniadis I.A. Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Syst. Appl. 2011, 38(3):2888-2911.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.3 , pp. 2888-2911
    • Yiakopoulos, C.T.1    Gryllias, K.C.2    Antoniadis, I.A.3
  • 69
    • 78449307665 scopus 로고    scopus 로고
    • Classification of Indian power coals using K-means clustering and Self Organizing Map neural network
    • Pandit Y.P. Classification of Indian power coals using K-means clustering and Self Organizing Map neural network. Fuel 2010, 90:339-347.
    • (2010) Fuel , vol.90 , pp. 339-347
    • Pandit, Y.P.1
  • 70
    • 70350106756 scopus 로고    scopus 로고
    • An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
    • Niknam T., Amiri B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 2010, 10:183-197.
    • (2010) Appl. Soft Comput. , vol.10 , pp. 183-197
    • Niknam, T.1    Amiri, B.2
  • 73
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • M. Hagan, M. Menhaj, Training feedforward networks with the marquardt algorithm, IEEE Transactions on Neural Networks 5 (1994) 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 77
    • 0027683141 scopus 로고
    • Training product unit neural networks with genetic algorithms
    • Janson D., Frenzel J. Training product unit neural networks with genetic algorithms. IEEE Expert 1993, 8:26-33.
    • (1993) IEEE Expert , vol.8 , pp. 26-33
    • Janson, D.1    Frenzel, J.2
  • 80
    • 79952006341 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using artificial neural network coupled with singular spectrum analysis
    • Wu C.L., Chau K.W. Rainfall-runoff modelling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399:394-409.
    • (2011) J. Hydrol. , vol.399 , pp. 394-409
    • Wu, C.L.1    Chau, K.W.2
  • 81
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of goodness of fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35:233-241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 82
    • 79958714869 scopus 로고    scopus 로고
    • Case study: improving real-time stage forecasting Muskingum model by incorporating the Rating Curve Model
    • Barbetta S., Moramarco T., Franchini M., Melone F., Brocca L., Singh V.P. Case study: improving real-time stage forecasting Muskingum model by incorporating the Rating Curve Model. J. Hydrol. Eng. 2011, 16:540-557.
    • (2011) J. Hydrol. Eng. , vol.16 , pp. 540-557
    • Barbetta, S.1    Moramarco, T.2    Franchini, M.3    Melone, F.4    Brocca, L.5    Singh, V.P.6
  • 83
    • 75449083847 scopus 로고    scopus 로고
    • An adaptivenetwork-based fuzzy inference system for short-term natural gas demand estimation: uncertainand complex environments
    • Azadeh A., Asadzadeh S.M., Ghanbari A. An adaptivenetwork-based fuzzy inference system for short-term natural gas demand estimation: uncertainand complex environments. Energy Policy 2010, 38:1529-1536.
    • (2010) Energy Policy , vol.38 , pp. 1529-1536
    • Azadeh, A.1    Asadzadeh, S.M.2    Ghanbari, A.3
  • 84
    • 0030088019 scopus 로고    scopus 로고
    • Stepwise regression is an alternative to splines for fitting noisy data
    • Burkholder T.J., Lieber R.L. Stepwise regression is an alternative to splines for fitting noisy data. J. Biomech. 1996, 29:235-238.
    • (1996) J. Biomech. , vol.29 , pp. 235-238
    • Burkholder, T.J.1    Lieber, R.L.2
  • 86
    • 84875268006 scopus 로고    scopus 로고
    • Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series
    • Shahrabi J., Hadavandi E., Asadi S. Developing a hybrid intelligent model for forecasting problems: case study of tourism demand time series. Knowl. Based Syst. 2013, 43:112-122.
    • (2013) Knowl. Based Syst. , vol.43 , pp. 112-122
    • Shahrabi, J.1    Hadavandi, E.2    Asadi, S.3
  • 87
    • 79955121804 scopus 로고    scopus 로고
    • An empowered adaptive neuro-fuzzy inference system using self-organizing map clustering to predict mass transfer kinetics in deep-fat frying of ostrich meat plates
    • Amiryousefi M.R., Mohebbi M., Khodaiyan F., Asadi S. An empowered adaptive neuro-fuzzy inference system using self-organizing map clustering to predict mass transfer kinetics in deep-fat frying of ostrich meat plates. Comput. Electron. Agric. 2011, 76:89-95.
    • (2011) Comput. Electron. Agric. , vol.76 , pp. 89-95
    • Amiryousefi, M.R.1    Mohebbi, M.2    Khodaiyan, F.3    Asadi, S.4
  • 88
    • 84879936215 scopus 로고    scopus 로고
    • A study on siro, solo, compact, and conventional ring-spun yarns. Part III: modeling fiber migration using modular adaptive neuro-fuzzy inference system
    • Soltani P., Shahrabi J., Asadi S., Hadavandi E., Johari M.S. A study on siro, solo, compact, and conventional ring-spun yarns. Part III: modeling fiber migration using modular adaptive neuro-fuzzy inference system. J. Text. Inst. 2013, 1-11.
    • (2013) J. Text. Inst. , pp. 1-11
    • Soltani, P.1    Shahrabi, J.2    Asadi, S.3    Hadavandi, E.4    Johari, M.S.5
  • 89
    • 84872962314 scopus 로고    scopus 로고
    • A hybrid intelligent approach for modeling brand choice and constructing a market response simulator
    • Kazemi S.M.R., Hadavandi E., Mehmanpazir F., Nakhostin M.M. A hybrid intelligent approach for modeling brand choice and constructing a market response simulator. Knowl. Based Syst. 2012, 40:101-110.
    • (2012) Knowl. Based Syst. , vol.40 , pp. 101-110
    • Kazemi, S.M.R.1    Hadavandi, E.2    Mehmanpazir, F.3    Nakhostin, M.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.