메뉴 건너뛰기




Volumn 56, Issue , 2015, Pages 393-414

A novel three-step procedure to forecast the inspection volume

Author keywords

Artificial Neural Networks (ANNs); Inspection forecasting; Seasonal auto regressive integrated moving averages (SARIMA); Self organizing maps (SOM)

Indexed keywords

AUTOREGRESSIVE MOVING AVERAGE MODEL; CLUSTER ANALYSIS; CONFORMAL MAPPING; DECISION MAKING; FORECASTING; INSPECTION; PREDICTIVE ANALYTICS; TIME SERIES;

EID: 84955327395     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2015.04.024     Document Type: Article
Times cited : (22)

References (90)
  • 1
    • 0033382729 scopus 로고    scopus 로고
    • Freight mode choice models using artificial neural networks
    • Abdelwahab W., Sayed T. Freight mode choice models using artificial neural networks. Civ. Eng. Syst. 1999, 16(4):267-286.
    • (1999) Civ. Eng. Syst. , vol.16 , Issue.4 , pp. 267-286
    • Abdelwahab, W.1    Sayed, T.2
  • 3
    • 0010649420 scopus 로고    scopus 로고
    • Nonlinear Model Specification/Diagnostics: Insights from a Battery of Nonlinearity Tests
    • Economics Department Working Paper E99-05, Virginia Tech.
    • Ashley, R.A., Patterson, D.M., 2001. Nonlinear Model Specification/Diagnostics: Insights from a Battery of Nonlinearity Tests. Economics Department Working Paper E99-05, Virginia Tech.
    • (2001)
    • Ashley, R.A.1    Patterson, D.M.2
  • 5
    • 0040316008 scopus 로고
    • Has chaos been discovered with economic data
    • Oxford University Press, Oxford, UK, P. Chen, R. Day (Eds.)
    • Barnett W.A., Hinich M.J. Has chaos been discovered with economic data. Evolutionary Dynamics and Nonlinear Economics 1993, 254-263. Oxford University Press, Oxford, UK. P. Chen, R. Day (Eds.).
    • (1993) Evolutionary Dynamics and Nonlinear Economics , pp. 254-263
    • Barnett, W.A.1    Hinich, M.J.2
  • 6
    • 0000802704 scopus 로고    scopus 로고
    • Martingales, nonlinearity, and chaos
    • Barnett W.A., Serletis A. Martingales, nonlinearity, and chaos. J. Econ. Dyn. Control 2000, 24(5):703-724.
    • (2000) J. Econ. Dyn. Control , vol.24 , Issue.5 , pp. 703-724
    • Barnett, W.A.1    Serletis, A.2
  • 7
    • 11844254777 scopus 로고    scopus 로고
    • A time-domain test for some types of nonlinearity
    • Barnett A.G., Wolff R.C. A time-domain test for some types of nonlinearity. IEEE Trans. Signal Process. 2005, 53(1):26-33.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.1 , pp. 26-33
    • Barnett, A.G.1    Wolff, R.C.2
  • 10
    • 17744399299 scopus 로고    scopus 로고
    • A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia
    • Binner J.M., Bissoondeeal R.K., Elger T., Gazely A.M., Mullineux A.W. A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia. Appl. Econ. 2005, 37(6):665-680.
    • (2005) Appl. Econ. , vol.37 , Issue.6 , pp. 665-680
    • Binner, J.M.1    Bissoondeeal, R.K.2    Elger, T.3    Gazely, A.M.4    Mullineux, A.W.5
  • 11
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev T. Generalized autoregressive conditional heteroskedasticity. J. Economet. 1986, 31(3):307-327.
    • (1986) J. Economet. , vol.31 , Issue.3 , pp. 307-327
    • Bollerslev, T.1
  • 14
    • 85071343664 scopus 로고    scopus 로고
    • A test for independence based on the correlation dimension
    • Broock W., Scheinkman J.A., Dechert W.D., LeBaron B. A test for independence based on the correlation dimension. Economet. Rev. 1996, 15(3):197-235.
    • (1996) Economet. Rev. , vol.15 , Issue.3 , pp. 197-235
    • Broock, W.1    Scheinkman, J.A.2    Dechert, W.D.3    LeBaron, B.4
  • 15
    • 0000728141 scopus 로고    scopus 로고
    • Testing for non-linearity in daily sterling exchange rates
    • Brooks C. Testing for non-linearity in daily sterling exchange rates. Appl. Finan. Econ. 1996, 6(4):307-317.
    • (1996) Appl. Finan. Econ. , vol.6 , Issue.4 , pp. 307-317
    • Brooks, C.1
  • 16
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renew. Energy 2010, 35(12):2732-2738.
    • (2010) Renew. Energy , vol.35 , Issue.12 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 17
    • 33750949227 scopus 로고    scopus 로고
    • Modelling public transport trips by radial basis function neural networks
    • Celikoglu H.B., Cigizoglu H.K. Modelling public transport trips by radial basis function neural networks. Math. Comput. Model. 2007, 45(3):480-489.
    • (2007) Math. Comput. Model. , vol.45 , Issue.3 , pp. 480-489
    • Celikoglu, H.B.1    Cigizoglu, H.K.2
  • 18
    • 0035567818 scopus 로고    scopus 로고
    • A study of hybrid neural network approaches and the effects of missing data on traffic forecasting
    • Chen H., Grant-Muller S., Mussone L., Montgomery F. A study of hybrid neural network approaches and the effects of missing data on traffic forecasting. Neural Comput. Appl. 2001, 10(3):277-286.
    • (2001) Neural Comput. Appl. , vol.10 , Issue.3 , pp. 277-286
    • Chen, H.1    Grant-Muller, S.2    Mussone, L.3    Montgomery, F.4
  • 19
    • 4444316599 scopus 로고
    • The use of neural networks and time series models for short term traffic forecasting: a comparative study
    • Manchester, September 13-17, 1993.
    • Clark, S.D., Dougherty, M.S., Kirby, H.R., 1993. The use of neural networks and time series models for short term traffic forecasting: a comparative study. In: Proceedings of PTRC 21st Summer Annual Meeting, Manchester, September 13-17, 1993.
    • (1993) Proceedings of PTRC 21st Summer Annual Meeting
    • Clark, S.D.1    Dougherty, M.S.2    Kirby, H.R.3
  • 20
    • 0742271716 scopus 로고    scopus 로고
    • On the use of self-organizing maps to accelerate vector quantization
    • De Bodt E., Cottrell M., Letremy P., Verleysen M. On the use of self-organizing maps to accelerate vector quantization. Neurocomputing 2004, 56:187-203.
    • (2004) Neurocomputing , vol.56 , pp. 187-203
    • De Bodt, E.1    Cottrell, M.2    Letremy, P.3    Verleysen, M.4
  • 21
    • 0347526141 scopus 로고    scopus 로고
    • Neural network model for rapid forecasting of freeway link travel time
    • Dharia A., Adeli H. Neural network model for rapid forecasting of freeway link travel time. Eng. Appl. Artif. Intell. 2003, 16(7):607-613.
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , Issue.7 , pp. 607-613
    • Dharia, A.1    Adeli, H.2
  • 22
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • Diaz-Robles L.A., Ortega J.C., Fu J.S., Reed G.D., Chow J.C., Watson J.G., Moncada-Herrera J.A. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 2008, 42(35):8331-8340.
    • (2008) Atmos. Environ. , vol.42 , Issue.35 , pp. 8331-8340
    • Diaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 23
    • 0000472488 scopus 로고
    • Likelihood ratio statistics for autoregressive time series with a unit root
    • Dickey D.A., Fuller W.A. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: J. Economet. Soc. 1981, 1057-1072.
    • (1981) Econometrica: J. Economet. Soc. , pp. 1057-1072
    • Dickey, D.A.1    Fuller, W.A.2
  • 25
    • 0029485810 scopus 로고
    • A review of neural networks applied to transport
    • Dougherty M. A review of neural networks applied to transport. Transport. Res. Part C: Emerg. Technol. 1995, 3(4):247-260.
    • (1995) Transport. Res. Part C: Emerg. Technol. , vol.3 , Issue.4 , pp. 247-260
    • Dougherty, M.1
  • 26
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation
    • Engle R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: J. Economet. Soc. 1982, 987-1007.
    • (1982) Econometrica: J. Economet. Soc. , pp. 987-1007
    • Engle, R.F.1
  • 27
    • 0032709495 scopus 로고    scopus 로고
    • Estimation of percentage of pass-by trips generated by a shopping center using artificial neural networks
    • Faghri A., Aneja S., Vaziri M. Estimation of percentage of pass-by trips generated by a shopping center using artificial neural networks. Transport. Plann. Technol. 1999, 22(4):271-286.
    • (1999) Transport. Plann. Technol. , vol.22 , Issue.4 , pp. 271-286
    • Faghri, A.1    Aneja, S.2    Vaziri, M.3
  • 28
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11(1):86-92.
    • (1940) Ann. Math. Stat. , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 30
    • 84881117735 scopus 로고    scopus 로고
    • A comparison of traditional and neural networks forecasting techniques for container throughput at bangkok port
    • Gosasang V., Chandraprakaikul W., Kiattisin S. A comparison of traditional and neural networks forecasting techniques for container throughput at bangkok port. Asian J. Shipping Logist. 2011, 27(3):463-482.
    • (2011) Asian J. Shipping Logist. , vol.27 , Issue.3 , pp. 463-482
    • Gosasang, V.1    Chandraprakaikul, W.2    Kiattisin, S.3
  • 31
    • 84908701086 scopus 로고    scopus 로고
    • An improved hybrid ARIMA and support vector machine model for water quality prediction
    • Springer
    • Guo Y., Wang G., Zhang X., Deng W. An improved hybrid ARIMA and support vector machine model for water quality prediction. Anonymous Rough Sets and Knowledge Technology 2014, 411-422. Springer.
    • (2014) Anonymous Rough Sets and Knowledge Technology , pp. 411-422
    • Guo, Y.1    Wang, G.2    Zhang, X.3    Deng, W.4
  • 32
    • 85027920814 scopus 로고    scopus 로고
    • Real time traffic flow outlier detection using short-term traffic conditional variance prediction
    • Guo J., Huang W., Williams B.M. Real time traffic flow outlier detection using short-term traffic conditional variance prediction. Transport. Res. Part C: Emerg. Technol. 2015, 50:160-172.
    • (2015) Transport. Res. Part C: Emerg. Technol. , vol.50 , pp. 160-172
    • Guo, J.1    Huang, W.2    Williams, B.M.3
  • 33
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 34
    • 0038383172 scopus 로고    scopus 로고
    • Time-series analysis with neural networks and ARIMA-neural network hybrids
    • Hansen J.V., Nelson R.D. Time-series analysis with neural networks and ARIMA-neural network hybrids. J. Exp. Theor. Artif. Intell. 2003, 15(3):315-330.
    • (2003) J. Exp. Theor. Artif. Intell. , vol.15 , Issue.3 , pp. 315-330
    • Hansen, J.V.1    Nelson, R.D.2
  • 35
    • 84986811814 scopus 로고
    • Testing for Gaussianity and linearity of a stationary time series
    • Hinich M.J. Testing for Gaussianity and linearity of a stationary time series. J. Time Ser. Anal. 1982, 3(3):169-176.
    • (1982) J. Time Ser. Anal. , vol.3 , Issue.3 , pp. 169-176
    • Hinich, M.J.1
  • 36
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 37
    • 56349169042 scopus 로고    scopus 로고
    • A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting
    • Huang C., Tsai C. A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Syst. Appl. 2009, 36(2):1529-1539.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 1529-1539
    • Huang, C.1    Tsai, C.2
  • 38
    • 79953717385 scopus 로고    scopus 로고
    • A hybrid model of self-organizing maps (SOM) and least square support vector machine (LSSVM) for time-series forecasting
    • Ismail S., Shabri A., Samsudin R. A hybrid model of self-organizing maps (SOM) and least square support vector machine (LSSVM) for time-series forecasting. Expert Syst. Appl. 2011, 38(8):10574-10578.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10574-10578
    • Ismail, S.1    Shabri, A.2    Samsudin, R.3
  • 41
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis M., Vlahogianni E. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transport. Res. Part C: Emerg. Technol. 2011, 19(3):387-399.
    • (2011) Transport. Res. Part C: Emerg. Technol. , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.1    Vlahogianni, E.2
  • 42
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network (p,d,q) model for timeseries forecasting
    • Khashei M., Bijari M. An artificial neural network (p,d,q) model for timeseries forecasting. Expert Syst. Appl. 2010, 37(1):479-489.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 43
    • 78751608738 scopus 로고    scopus 로고
    • A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
    • Khashei M., Bijari M. A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Appl. Soft Comput. 2011, 11(2):2664-2675.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2664-2675
    • Khashei, M.1    Bijari, M.2
  • 44
    • 82255192304 scopus 로고    scopus 로고
    • A new class of hybrid models for time series forecasting
    • Khashei M., Bijari M. A new class of hybrid models for time series forecasting. Expert Syst. Appl. 2012, 39(4):4344-4357.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.4 , pp. 4344-4357
    • Khashei, M.1    Bijari, M.2
  • 45
    • 4444331850 scopus 로고    scopus 로고
    • Forecasting the Antwerp maritime traffic flows using transformations and intervention models
    • Klein A. Forecasting the Antwerp maritime traffic flows using transformations and intervention models. J. Forecasting 1998, 15(5):395-412.
    • (1998) J. Forecasting , vol.15 , Issue.5 , pp. 395-412
    • Klein, A.1
  • 46
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43(1):59-69.
    • (1982) Biol. Cybern. , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 48
    • 0036722310 scopus 로고    scopus 로고
    • Integration of self-organizing feature map and K-means algorithm for market segmentation
    • Kuo R.J., Ho L.M., Hu C.M. Integration of self-organizing feature map and K-means algorithm for market segmentation. Comput. Oper. Res. 2002, 29(11):1475-1493.
    • (2002) Comput. Oper. Res. , vol.29 , Issue.11 , pp. 1475-1493
    • Kuo, R.J.1    Ho, L.M.2    Hu, C.M.3
  • 49
    • 28544447753 scopus 로고    scopus 로고
    • Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation
    • Kuo R.J., An Y.L., Wang H.S., Chung W.J. Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation. Expert Syst. Appl. 2006, 30(2):313-324.
    • (2006) Expert Syst. Appl. , vol.30 , Issue.2 , pp. 313-324
    • Kuo, R.J.1    An, Y.L.2    Wang, H.S.3    Chung, W.J.4
  • 50
    • 33645756818 scopus 로고    scopus 로고
    • Short-term hourly traffic forecasts using Hong Kong annual traffic census
    • Lam W., Tang Y., Chan K., Tam M. Short-term hourly traffic forecasts using Hong Kong annual traffic census. Transportation 2006, 33(3):291-310.
    • (2006) Transportation , vol.33 , Issue.3 , pp. 291-310
    • Lam, W.1    Tang, Y.2    Chan, K.3    Tam, M.4
  • 52
    • 78049295934 scopus 로고    scopus 로고
    • Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting
    • Lu C., Wang Y. Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. Int. J. Prod. Econ. 2010, 128(2):603-613.
    • (2010) Int. J. Prod. Econ. , vol.128 , Issue.2 , pp. 603-613
    • Lu, C.1    Wang, Y.2
  • 54
    • 84986777926 scopus 로고
    • Diagnostic checking ARMA time series models using squared-residual autocorrelations
    • McLeod A.I., Li W.K. Diagnostic checking ARMA time series models using squared-residual autocorrelations. J. Time Ser. Anal. 1983, 4(4):269-273.
    • (1983) J. Time Ser. Anal. , vol.4 , Issue.4 , pp. 269-273
    • McLeod, A.I.1    Li, W.K.2
  • 55
    • 84884975137 scopus 로고    scopus 로고
    • Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series
    • Modarres R., Ouarda T. Generalized autoregressive conditional heteroscedasticity modelling of hydrologic time series. Hydrol. Process. 2013, 27(22):3174-3191.
    • (2013) Hydrol. Process. , vol.27 , Issue.22 , pp. 3174-3191
    • Modarres, R.1    Ouarda, T.2
  • 56
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • Okutani I., Stephanedes Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transport. Res. Part B: Methodol. 1984, 18(1):1-11.
    • (1984) Transport. Res. Part B: Methodol. , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 57
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel times using modular neural networks
    • Park D., Rilett L.R. Forecasting multiple-period freeway link travel times using modular neural networks. Transport. Res. Rec.: J. Transport. Res. Board 1998, 1617:163-170.
    • (1998) Transport. Res. Rec.: J. Transport. Res. Board , vol.1617 , pp. 163-170
    • Park, D.1    Rilett, L.R.2
  • 58
    • 69249202378 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting container throughput volumes
    • Peng W., Chu C. A comparison of univariate methods for forecasting container throughput volumes. Math. Comput. Model. 2009, 50(7-8):1045-1057.
    • (2009) Math. Comput. Model. , vol.50 , Issue.7-8 , pp. 1045-1057
    • Peng, W.1    Chu, C.2
  • 59
    • 77956888124 scopus 로고
    • Testing for a unit root in time series regression
    • Phillips P.C., Perron P. Testing for a unit root in time series regression. Biometrika 1988, 75(2):335-346.
    • (1988) Biometrika , vol.75 , Issue.2 , pp. 335-346
    • Phillips, P.C.1    Perron, P.2
  • 60
    • 0036825523 scopus 로고    scopus 로고
    • Multiple comparison procedures applied to model selection
    • Pizarro J., Guerrero E., Galindo P.L. Multiple comparison procedures applied to model selection. Neurocomputing 2002, 48(1-4):155-173.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 155-173
    • Pizarro, J.1    Guerrero, E.2    Galindo, P.L.3
  • 61
    • 0035501669 scopus 로고    scopus 로고
    • Intelligent simulation and prediction of traffic flow dispersion
    • Qiao F., Yang H., Lam W.H. Intelligent simulation and prediction of traffic flow dispersion. Transport. Res. Part B: Methodol. 2001, 35(9):843-863.
    • (2001) Transport. Res. Part B: Methodol. , vol.35 , Issue.9 , pp. 843-863
    • Qiao, F.1    Yang, H.2    Lam, W.H.3
  • 62
    • 18144400978 scopus 로고    scopus 로고
    • Time series modelling of global mean temperature for managerial decision-making
    • Romilly P. Time series modelling of global mean temperature for managerial decision-making. J. Environ. Manage. 2005, 76(1):61-70.
    • (2005) J. Environ. Manage. , vol.76 , Issue.1 , pp. 61-70
    • Romilly, P.1
  • 64
    • 85015560308 scopus 로고    scopus 로고
    • A two-stage procedure for forecasting freight inspections at Border Inspection Posts using SOMs and support vector regression
    • Ruiz-Aguilar J., Turias I., Jiménez-Come M. A two-stage procedure for forecasting freight inspections at Border Inspection Posts using SOMs and support vector regression. Int. J. Prod. Res. (ahead-of-print) 2014, 1-12.
    • (2014) Int. J. Prod. Res. (ahead-of-print) , pp. 1-12
    • Ruiz-Aguilar, J.1    Turias, I.2    Jiménez-Come, M.3
  • 65
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • MIT press, Cambridge, MA, D.E. Rumelhart, J.L. McClelland (Eds.)
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation. Parallel Distributed Processing 1986, 318-362. MIT press, Cambridge, MA. D.E. Rumelhart, J.L. McClelland (Eds.).
    • (1986) Parallel Distributed Processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 66
    • 28444472084 scopus 로고    scopus 로고
    • Evaluation of two modeling methods for generating heavy-truck trips at an intermodal facility by using vessel freight data
    • Sarvareddy P., Al-Deek H., Klodzinski J., Anagnostopoulos G. Evaluation of two modeling methods for generating heavy-truck trips at an intermodal facility by using vessel freight data. Transport. Res. Rec.: J. Transport. Res. Board 2005, 1906(1):113-120.
    • (2005) Transport. Res. Rec.: J. Transport. Res. Board , vol.1906 , Issue.1 , pp. 113-120
    • Sarvareddy, P.1    Al-Deek, H.2    Klodzinski, J.3    Anagnostopoulos, G.4
  • 67
    • 0033692230 scopus 로고    scopus 로고
    • Comparison of neural and conventional approaches to mode choice analysis
    • Sayed T., Razavi A. Comparison of neural and conventional approaches to mode choice analysis. J. Comput. Civ. Eng. 2000, 14(1):23-30.
    • (2000) J. Comput. Civ. Eng. , vol.14 , Issue.1 , pp. 23-30
    • Sayed, T.1    Razavi, A.2
  • 68
    • 40449101916 scopus 로고    scopus 로고
    • Adaptive seasonal time series models for forecasting short-term traffic flow
    • Shekhar S., Williams B.M. Adaptive seasonal time series models for forecasting short-term traffic flow. Transport. Res. Rec.: J. Transport. Res. Board 2008, 2024(1):116-125.
    • (2008) Transport. Res. Rec.: J. Transport. Res. Board , vol.2024 , Issue.1 , pp. 116-125
    • Shekhar, S.1    Williams, B.M.2
  • 69
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • Shi J., Guo J., Zheng S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 2012, 16(5):3471-3480.
    • (2012) Renew. Sustain. Energy Rev. , vol.16 , Issue.5 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 70
    • 22944475555 scopus 로고    scopus 로고
    • Time series forecasting: obtaining long term trends with self-organizing maps
    • Simon G., Lendasse A., Cottrell M., Fort J., Verleysen M. Time series forecasting: obtaining long term trends with self-organizing maps. Pattern Recogn. Lett. 2005, 26(12):1795-1808.
    • (2005) Pattern Recogn. Lett. , vol.26 , Issue.12 , pp. 1795-1808
    • Simon, G.1    Lendasse, A.2    Cottrell, M.3    Fort, J.4    Verleysen, M.5
  • 73
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transport. Res. Part C: Emerg. Technol. 2003, 11(2):121-135.
    • (2003) Transport. Res. Part C: Emerg. Technol. , vol.11 , Issue.2 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 74
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc.: Ser. B (Methodol.) 1974, 111-147.
    • (1974) J. Roy. Stat. Soc.: Ser. B (Methodol.) , pp. 111-147
    • Stone, M.1
  • 75
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Tang Z., de Almeida C., Fishwick P.A. Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation 1991, 57(5):303-310.
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    de Almeida, C.2    Fishwick, P.A.3
  • 76
    • 27744467138 scopus 로고    scopus 로고
    • A comparative study of autoregressive neural network hybrids
    • Taskaya-Temizel T., Casey M.C. A comparative study of autoregressive neural network hybrids. Neural Networks 2005, 18(5):781-789.
    • (2005) Neural Networks , vol.18 , Issue.5 , pp. 781-789
    • Taskaya-Temizel, T.1    Casey, M.C.2
  • 77
    • 56349087795 scopus 로고    scopus 로고
    • Neural network based temporal feature models for short-term railway passenger demand forecasting
    • Tsai T., Lee C., Wei C. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Syst. Appl. 2009, 36(2):3728-3736.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3728-3736
    • Tsai, T.1    Lee, C.2    Wei, C.3
  • 78
    • 0036140323 scopus 로고    scopus 로고
    • Combining neural network model with seasonal time series ARIMA model
    • Tseng F., Yu H., Tzeng G. Combining neural network model with seasonal time series ARIMA model. Technol. Forecast. Soc. Chang. 2002, 69(1):71-87.
    • (2002) Technol. Forecast. Soc. Chang. , vol.69 , Issue.1 , pp. 71-87
    • Tseng, F.1    Yu, H.2    Tzeng, G.3
  • 81
    • 70349501971 scopus 로고    scopus 로고
    • Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics
    • Vlahogianni E.I. Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. J. Intell. Transport. Syst. 2009, 13(2):73-84.
    • (2009) J. Intell. Transport. Syst. , vol.13 , Issue.2 , pp. 73-84
    • Vlahogianni, E.I.1
  • 82
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transport Rev. 2004, 24(5):533-557.
    • (2004) Transport Rev. , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 83
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transport. Res. Part C: Emerg. Technol. 2005, 13(3):211-234.
    • (2005) Transport. Res. Part C: Emerg. Technol. , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 84
    • 33747398667 scopus 로고    scopus 로고
    • An extreme value based neural clustering approach for identifying traffic states. In: Intelligent Transportation Systems
    • 2005.
    • Vlahogianni, E.I., Karlaftis, M.G., Stathopoulos, A., 2005b. An extreme value based neural clustering approach for identifying traffic states. In: Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, pp. 320-325.
    • (2005) Proceedings, 2005 IEEE , pp. 320-325
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Stathopoulos, A.3
  • 85
    • 50249115597 scopus 로고    scopus 로고
    • Temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach. Comput.-Aided Civ. Infrastruct. Eng. 2008, 23(7):536-548.
    • (2008) Comput.-Aided Civ. Infrastruct. Eng. , vol.23 , Issue.7 , pp. 536-548
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 86
    • 84858745887 scopus 로고    scopus 로고
    • Stock index forecasting based on a hybrid model
    • Wang J., Wang J., Zhang Z., Guo S. Stock index forecasting based on a hybrid model. Omega 2012, 40(6):758-766.
    • (2012) Omega , vol.40 , Issue.6 , pp. 758-766
    • Wang, J.1    Wang, J.2    Zhang, Z.3    Guo, S.4
  • 88
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 89
    • 78650867878 scopus 로고    scopus 로고
    • Analysis of peak and non-peak traffic forecasts using combined models
    • Zhang Y., Liu Y. Analysis of peak and non-peak traffic forecasts using combined models. J. Adv. Transport. 2011, 45(1):21-37.
    • (2011) J. Adv. Transport. , vol.45 , Issue.1 , pp. 21-37
    • Zhang, Y.1    Liu, Y.2
  • 90
    • 16644384670 scopus 로고    scopus 로고
    • Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models
    • Zhong M., Sharma S., Lingras P. Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models. J. Comput. Civ. Eng. 2005, 19(1):94-103.
    • (2005) J. Comput. Civ. Eng. , vol.19 , Issue.1 , pp. 94-103
    • Zhong, M.1    Sharma, S.2    Lingras, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.