메뉴 건너뛰기




Volumn 126, Issue 2, 2017, Pages

Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach

Author keywords

Forecasting; Gene expression programming; Hybrid; Inflow; Time series

Indexed keywords

FORECASTING METHOD; INFLOW; RESERVOIR; RIVER FLOW; TIME SERIES;

EID: 85015785541     PISSN: 02534126     EISSN: 0973774X     Source Type: Journal    
DOI: 10.1007/s12040-017-0798-y     Document Type: Article
Times cited : (44)

References (46)
  • 1
    • 40149110190 scopus 로고    scopus 로고
    • Stochastic simulation of the severity of hydrological drought
    • Abebe A and Foerch G 2008 Stochastic simulation of the severity of hydrological drought; Water Environ. J. 22 2–10.
    • (2008) Water Environ. J , vol.22 , pp. 2-10
    • Abebe, A.1    Foerch, G.2
  • 2
    • 84880524063 scopus 로고    scopus 로고
    • Stochastic modeling of Lake Van water level time series with jumps and multiple trends
    • Aksoy H, Unal N, Eris E and Yuce M 2013 Stochastic modeling of Lake Van water level time series with jumps and multiple trends; Hydrol. Earth Syst. Sci. 17 2297–2303.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 2297-2303
    • Aksoy, H.1    Unal, N.2    Eris, E.3    Yuce, M.4
  • 3
    • 79955683058 scopus 로고    scopus 로고
    • A robust data mining approach for formulation of geotechnical engineering systems
    • Alavi A H and Gandomi A H 2011 A robust data mining approach for formulation of geotechnical engineering systems; Eng. Comput. 28 242–274.
    • (2011) Eng. Comput. , vol.28 , pp. 242-274
    • Alavi, A.H.1    Gandomi, A.H.2
  • 4
    • 84978729819 scopus 로고    scopus 로고
    • Time series analysis of Baghdad rainfall using ARIMA method
    • Ali S M 2013 Time series analysis of Baghdad rainfall using ARIMA method; Iraqi J. Sci. 54 1136–1142.
    • (2013) Iraqi J. Sci. , vol.54 , pp. 1136-1142
    • Ali, S.M.1
  • 5
    • 84945595789 scopus 로고
    • Distribution of residual auto-correlations in autoregressive-integrated moving average time series models
    • Box G E and Pierce D A 1970 Distribution of residual auto-correlations in autoregressive-integrated moving average time series models; J. Am. Statist. Assoc. 65 1509–1526.
    • (1970) J. Am. Statist. Assoc. , vol.65 , pp. 1509-1526
    • Box, G.E.1    Pierce, D.A.2
  • 6
    • 0029412179 scopus 로고
    • Product periodic autoregressive processes for modeling intermittent monthly streamflows
    • Chebaane M, Salas J D and Boes D C 1995 Product periodic autoregressive processes for modeling intermittent monthly streamflows; Water. Resour. Res. 31 1513–1518.
    • (1995) Water. Resour. Res. , vol.31 , pp. 1513-1518
    • Chebaane, M.1    Salas, J.D.2    Boes, D.C.3
  • 9
    • 84882314134 scopus 로고    scopus 로고
    • Evaluation of sediment transport in sewer using artificial neural network
    • Ebtehaj I and Bonakdari H 2013 Evaluation of sediment transport in sewer using artificial neural network; Eng. Appl. Comput. Fluid Mech. 7 382–392.
    • (2013) Eng. Appl. Comput. Fluid Mech. , vol.7 , pp. 382-392
    • Ebtehaj, I.1    Bonakdari, H.2
  • 10
    • 84937784552 scopus 로고    scopus 로고
    • Gene expression programming to predict the discharge coefficient in rectangular side weirs
    • Ebtehaj I, Bonakdari H, Zaji A H, Azimi H and Sharifi A 2015 Gene expression programming to predict the discharge coefficient in rectangular side weirs; Appl. Soft. Comput. 35 618–628.
    • (2015) Appl. Soft. Comput. , vol.35 , pp. 618-628
    • Ebtehaj, I.1    Bonakdari, H.2    Zaji, A.H.3    Azimi, H.4    Sharifi, A.5
  • 11
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for water quality time series prediction
    • Faruk D Ö 2010 A hybrid neural network and ARIMA model for water quality time series prediction; Eng. Appl. Artif. Intel. 23 586–594.
    • (2010) Eng. Appl. Artif. Intel. , vol.23 , pp. 586-594
    • Faruk, D.Ö.1
  • 12
    • 0347499408 scopus 로고    scopus 로고
    • Algorithm for solving gene expression programming: A new adaptive problems
    • Ferreira C 2001 Algorithm for solving gene expression programming: A new adaptive problems; Complex Systems 13 87–129.
    • (2001) Complex Systems , vol.13 , pp. 87-129
    • Ferreira, C.1
  • 14
    • 84922765191 scopus 로고    scopus 로고
    • Energy price forecasting in the North Brazilian market using NN-ARIMA model and explanatory variables
    • Orlando, Florida, USA, 9–12 December
    • Filho J, Affonso C M and Oliveira R C 2014 Energy price forecasting in the North Brazilian market using NN-ARIMA model and explanatory variables; In: Proc. Comput. Intel. Eng. Solut. (CIES), Orlando, Florida, USA, 9–12 December.
    • (2014) Proc. Comput. Intel. Eng. Solut. (CIES)
    • Filho, J.1    Affonso, C.M.2    Oliveira, R.C.3
  • 15
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • Firat M 2008 Comparison of artificial intelligence techniques for river flow forecasting; Hydrol. Earth. Syst. Sci. 12 123–139.
    • (2008) Hydrol. Earth. Syst. Sci. , vol.12 , pp. 123-139
    • Firat, M.1
  • 16
    • 84890351420 scopus 로고    scopus 로고
    • A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region
    • He Z, Wen X, Liu H and Du J 2014 A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region; J. Hydrol. 509 379–386.
    • (2014) J. Hydrol. , vol.509 , pp. 379-386
    • He, Z.1    Wen, X.2    Liu, H.3    Du, J.4
  • 17
    • 0021639934 scopus 로고
    • A nonparametric trend test for seasonal data with serial dependence
    • Hirsch R M and Slack J R 1984 A nonparametric trend test for seasonal data with serial dependence; Water Resour. Res. 20 727–732.
    • (1984) Water Resour. Res. , vol.20 , pp. 727-732
    • Hirsch, R.M.1    Slack, J.R.2
  • 19
    • 84939161761 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs
    • Khoshbin F, Bonakdari H, Ashraf Talesh S H, Ebtehaj I, Zaji A H and Azimi H 2016 Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs; Eng. Optimiz. 48 933–948.
    • (2016) Eng. Optimiz. , vol.48 , pp. 933-948
    • Khoshbin, F.1    Bonakdari, H.2    Ashraf Talesh, S.H.3    Ebtehaj, I.4    Zaji, A.H.5    Azimi, H.6
  • 21
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • Kisi Ö 2004 River flow modeling using artificial neural networks; J. Hydrol. Eng. 9 60–63.
    • (2004) J. Hydrol. Eng. , vol.9 , pp. 60-63
    • Kisi, Ö.1
  • 22
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi Ö and Cigizoglu H K 2007 Comparison of different ANN techniques in river flow prediction; Civil Eng. Environ. Syst. 24 211–231.
    • (2007) Civil Eng. Environ. Syst. , vol.24 , pp. 211-231
    • Kisi, Ö.1    Cigizoglu, H.K.2
  • 23
    • 84862679428 scopus 로고    scopus 로고
    • Suspended sediment modeling using genetic programming and soft computing techniques
    • Kisi O, Dailr A H, Cimen M and Shiri J 2012a Suspended sediment modeling using genetic programming and soft computing techniques; J. Hydrol. 450 48–58.
    • (2012) J. Hydrol. , vol.450 , pp. 48-58
    • Kisi, O.1    Dailr, A.H.2    Cimen, M.3    Shiri, J.4
  • 24
    • 84857912130 scopus 로고    scopus 로고
    • Forecasting daily lake levels using artificial intelligence approaches
    • Kisi O, Shiri J and Nikoofar B 2012b Forecasting daily lake levels using artificial intelligence approaches; Comput. Geosci. 41 169–180.
    • (2012) Comput. Geosci. , vol.41 , pp. 169-180
    • Kisi, O.1    Shiri, J.2    Nikoofar, B.3
  • 25
    • 84937468013 scopus 로고    scopus 로고
    • Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment
    • Kothari M and Gharde K 2015 Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri catchment; J. Earth Syst. Sci. 124 933–943.
    • (2015) J. Earth Syst. Sci. , vol.124 , pp. 933-943
    • Kothari, M.1    Gharde, K.2
  • 26
    • 67650333848 scopus 로고    scopus 로고
    • Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model
    • Koutroumanidis T, Ioannou K and Arabatzis G 2009 Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model; Energ. Policy 37 3627–3634.
    • (2009) Energ. Policy , vol.37 , pp. 3627-3634
    • Koutroumanidis, T.1    Ioannou, K.2    Arabatzis, G.3
  • 28
    • 0000873069 scopus 로고
    • A method for the solution of certain non– linear problems in least squares
    • Levenberg K 1944 A method for the solution of certain non– linear problems in least squares; Quart. Appl. Math. 2(2) 164–168.
    • (1944) Quart. Appl. Math. , vol.2 , Issue.2 , pp. 164-168
    • Levenberg, K.1
  • 29
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA–ANN and ARIMA–Kalman hybrid methods for wind speed prediction
    • Liu H, H-q Tian and Li Y-f 2012 Comparison of two new ARIMA–ANN and ARIMA–Kalman hybrid methods for wind speed prediction; Appl. Energ. 98 415–424.
    • (2012) Appl. Energ. , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.-Q.2    Li, Y.-F.3
  • 30
    • 84861208736 scopus 로고    scopus 로고
    • Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques
    • Lohani A, Kumar R and Singh R 2012 Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques; J. Hydrol. 442 23–35.
    • (2012) J. Hydrol. , vol.442 , pp. 23-35
    • Lohani, A.1    Kumar, R.2    Singh, R.3
  • 32
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann H B and Whitney D R 1947 On a test of whether one of two random variables is stochastically larger than the other; Ann. Math. Stat., pp. 50–60.
    • (1947) Ann. Math. Stat. , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 34
    • 84973137761 scopus 로고    scopus 로고
    • Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA–ANN model
    • Moeeni H and Bonakdari H 2016 Forecasting monthly inflow with extreme seasonal variation using the hybrid SARIMA–ANN model; Stoch. Env. Res. Risk. A, doi: 10.1007/s00477–016–1273-z.
    • (2016) Stoch. Env. Res. Risk. A
    • Moeeni, H.1    Bonakdari, H.2
  • 35
    • 73949113911 scopus 로고    scopus 로고
    • Comparison of regression, ARIMA and ANN models for reservoir inflow forecasting using snowmelt equivalent (A case study of Karaj)
    • Mohammadi K, Eslami H and Dardashti S D 2005 Comparison of regression, ARIMA and ANN models for reservoir inflow forecasting using snowmelt equivalent (a case study of Karaj); J. Agric. Sci. Technol. 7 17–30.
    • (2005) J. Agric. Sci. Technol. , vol.7 , pp. 17-30
    • Mohammadi, K.1    Eslami, H.2    Dardashti, S.D.3
  • 36
    • 0029412334 scopus 로고
    • Multiplicative seasonal ARIMA model for longterm forecasting of inflows; Water Resour
    • Mohan S and Vedula S 1995 Multiplicative seasonal ARIMA model for longterm forecasting of inflows; Water Resour. Manag. 9 115–126.
    • (1995) Manag. , vol.9 , pp. 115-126
    • Mohan, S.1    Vedula, S.2
  • 37
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall–runoff process
    • Nourani V, Kisi Ö and Komasi M 2011 Two hybrid artificial intelligence approaches for modeling rainfall–runoff process; J. Hydrol. 402 41–59.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 39
    • 85015820252 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using ANN and support vector machines: A case study from Nepal watershed
    • Sharma N, Zakaullah M, Tiwari H and Kumar D 2015 Runoff and sediment yield modeling using ANN and support vector machines: A case study from Nepal watershed; Model Earth Syst. Environ. 1 1–8.
    • (2015) Model Earth Syst. Environ. , vol.1 , pp. 1-8
    • Sharma, N.1    Zakaullah, M.2    Tiwari, H.3    Kumar, D.4
  • 40
    • 84936985967 scopus 로고    scopus 로고
    • Long-term runoff study using SARIMA and ARIMA models in the United States
    • Valipour M 2015 Long-term runoff study using SARIMA and ARIMA models in the United States; Meteorol. Appl. 22 592–598.
    • (2015) Meteorol. Appl. , vol.22 , pp. 592-598
    • Valipour, M.1
  • 41
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour M, Banihabib M E and Behbahani S M R 2013 Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir; J. Hydrol. 476 433–441.
    • (2013) J. Hydrol. , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 43
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang W-C, Chau K-W, Cheng C-T and Qiu L 2009 A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series; J. Hydrol. 374 294–306.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.-C.1    Chau, K.-W.2    Cheng, C.-T.3    Qiu, L.4
  • 44
    • 80755130684 scopus 로고    scopus 로고
    • Performances of stochastic approaches in generating low streamflow data for drought analysis
    • Yurekli K and Kurunc A 2005 Performances of stochastic approaches in generating low streamflow data for drought analysis; J. Spat. Hydrol. 5.
    • (2005) J. Spat. Hydrol. , vol.5
    • Yurekli, K.1    Kurunc, A.2
  • 45
    • 13744260107 scopus 로고    scopus 로고
    • Application of linear stochastic models to monthly flow data of Kelkit Stream
    • Yurekli K, Kurunc A and Ozturk F 2005 Application of linear stochastic models to monthly flow data of Kelkit Stream; Ecol. Model. 183 67–75.
    • (2005) Ecol. Model. , vol.183 , pp. 67-75
    • Yurekli, K.1    Kurunc, A.2    Ozturk, F.3
  • 46
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G P 2003 Time series forecasting using a hybrid ARIMA and neural network model; Neurocomputing 50 159–175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.