메뉴 건너뛰기




Volumn 38, Issue 7, 2016, Pages 654-663

Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover

Author keywords

enhancers; evolution; indels; lineage specific biology; promoters; transcriptional regulation

Indexed keywords

DNA;

EID: 85027958229     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201500192     Document Type: Article
Times cited : (4)

References (86)
  • 1
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • International Human Genome Sequencing C
    • International Human Genome Sequencing C, Adekoya E, Ait-Zahra M, Allen N, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.
    • (2001) Nature , vol.409 , pp. 860-921
    • Adekoya, E.1    Ait-Zahra, M.2    Allen, N.3
  • 2
    • 1542563409 scopus 로고    scopus 로고
    • Initial sequencing and comparative analysis of the mouse genome
    • Mouse Genome Sequencing C
    • Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K, Birney E, et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–62.
    • (2002) Nature , vol.420 , pp. 520-562
    • Waterston, R.H.1    Lindblad-Toh, K.2    Birney, E.3
  • 3
    • 84879627975 scopus 로고    scopus 로고
    • Next-generation sequencing platforms
    • Mardis ER. 2013. Next-generation sequencing platforms. Ann Rev Anal Chem 6: 287–303.
    • (2013) Ann Rev Anal Chem , vol.6 , pp. 287-303
    • Mardis, E.R.1
  • 5
    • 35648976118 scopus 로고    scopus 로고
    • The diploid genome sequence of an individual human
    • Levy S, Sutton G, Ng PC, Feuk L, et al. 2007. The diploid genome sequence of an individual human. PLoS Biol 5: e254.
    • (2007) PLoS Biol , vol.5
    • Levy, S.1    Sutton, G.2    Ng, P.C.3    Feuk, L.4
  • 6
    • 84975795680 scopus 로고    scopus 로고
    • An integrated map of genetic variation from 1,092 human genomes
    • McVean GA, Abecasis GR, Auton A, Brooks LD, et al. 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.
    • (2012) Nature , vol.491 , pp. 56-65
    • McVean, G.A.1    Abecasis, G.R.2    Auton, A.3    Brooks, L.D.4
  • 7
    • 84929132687 scopus 로고    scopus 로고
    • Large-scale whole-genome sequencing of the Icelandic population
    • Gudbjartsson DF, Helgason H, Gudjonsson SA, Zink F, et al. 2015. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet 47: 435–44.
    • (2015) Nat Genet , vol.47 , pp. 435-444
    • Gudbjartsson, D.F.1    Helgason, H.2    Gudjonsson, S.A.3    Zink, F.4
  • 8
    • 7444237566 scopus 로고    scopus 로고
    • The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils
    • Douzery EJ, Snell EA, Bapteste E, Delsuc F, et al. 2004. The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci U S A 101: 15386–91.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 15386-15391
    • Douzery, E.J.1    Snell, E.A.2    Bapteste, E.3    Delsuc, F.4
  • 9
    • 0035992053 scopus 로고    scopus 로고
    • The g-value paradox
    • Hahn MW, Wray GA. 2002. The g-value paradox. Evol Dev 4: 73–5.
    • (2002) Evol Dev , vol.4 , pp. 73-75
    • Hahn, M.W.1    Wray, G.A.2
  • 10
    • 77950801106 scopus 로고    scopus 로고
    • A human-specific de novo protein-coding gene associated with human brain functions
    • Li CY, Zhang Y, Wang Z, Zhang Y, et al. 2010. A human-specific de novo protein-coding gene associated with human brain functions. PLoS Comput Biol 6: e1000734.
    • (2010) PLoS Comput Biol , vol.6
    • Li, C.Y.1    Zhang, Y.2    Wang, Z.3    Zhang, Y.4
  • 11
    • 78649231644 scopus 로고    scopus 로고
    • Origins, evolution, and phenotypic impact of new genes
    • Kaessmann H. 2010. Origins, evolution, and phenotypic impact of new genes. Genome Res 20: 1313–26.
    • (2010) Genome Res , vol.20 , pp. 1313-1326
    • Kaessmann, H.1
  • 12
    • 66249148986 scopus 로고    scopus 로고
    • Lineage-specific biology revealed by a finished genome assembly of the mouse
    • Church DM, Goodstadt L, Hillier LW, Zody MC, et al. 2009. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 7: e1000112-e.
    • (2009) PLoS Biol , vol.7
    • Church, D.M.1    Goodstadt, L.2    Hillier, L.W.3    Zody, M.C.4
  • 13
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215–33.
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel, D.P.1
  • 15
    • 60149099385 scopus 로고    scopus 로고
    • Evolution and functions of long noncoding RNAs
    • Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding RNAs. Cell 136: 629–41.
    • (2009) Cell , vol.136 , pp. 629-641
    • Ponting, C.P.1    Oliver, P.L.2    Reik, W.3
  • 16
    • 34248162440 scopus 로고    scopus 로고
    • Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs
    • Ponjavic J, Ponting CP, Lunter G. 2007. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17: 556–65.
    • (2007) Genome Res , vol.17 , pp. 556-565
    • Ponjavic, J.1    Ponting, C.P.2    Lunter, G.3
  • 17
    • 76249108851 scopus 로고    scopus 로고
    • Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness
    • Marques AC, Ponting CP. 2009. Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 10: R124-R.
    • (2009) Genome Biol , vol.10 , pp. 124
    • Marques, A.C.1    Ponting, C.P.2
  • 18
    • 84864098110 scopus 로고    scopus 로고
    • Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome
    • Young RS, Marques AC, Tibbit C, Haerty W, et al. 2012. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biol Evol 4: 427–42.
    • (2012) Genome Biol Evol , vol.4 , pp. 427-442
    • Young, R.S.1    Marques, A.C.2    Tibbit, C.3    Haerty, W.4
  • 19
    • 77149139820 scopus 로고    scopus 로고
    • Enhancers: the abundance and function of regulatory sequences beyond promoters
    • Bulger M, Groudine M. 2010. Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 339: 250–7.
    • (2010) Dev Biol , vol.339 , pp. 250-257
    • Bulger, M.1    Groudine, M.2
  • 20
    • 33751316959 scopus 로고    scopus 로고
    • In vivo enhancer analysis of human conserved non-coding sequences
    • Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, et al. 2006. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444: 499–502.
    • (2006) Nature , vol.444 , pp. 499-502
    • Pennacchio, L.A.1    Ahituv, N.2    Moses, A.M.3    Prabhakar, S.4
  • 21
    • 70349270547 scopus 로고    scopus 로고
    • Emergence of a new gene from an intergenic region
    • Heinen TJ, Staubach F, Haming D, Tautz D. 2009. Emergence of a new gene from an intergenic region. Curr Biol 19: 1527–31.
    • (2009) Curr Biol , vol.19 , pp. 1527-1531
    • Heinen, T.J.1    Staubach, F.2    Haming, D.3    Tautz, D.4
  • 22
    • 84869485949 scopus 로고    scopus 로고
    • Evolution of the human-specific microRNA miR-941
    • Hu HY, He L, Fominykh K, Yan Z, et al. 2012. Evolution of the human-specific microRNA miR-941. Nat Commun 3: 1145.
    • (2012) Nat Commun , vol.3 , pp. 1145
    • Hu, H.Y.1    He, L.2    Fominykh, K.3    Yan, Z.4
  • 23
    • 51149097366 scopus 로고    scopus 로고
    • Human-specific gain of function in a developmental enhancer
    • Prabhakar S, Visel A, Akiyama JA, Shoukry M, et al. 2008. Human-specific gain of function in a developmental enhancer. Science 321: 1346–50.
    • (2008) Science , vol.321 , pp. 1346-1350
    • Prabhakar, S.1    Visel, A.2    Akiyama, J.A.3    Shoukry, M.4
  • 24
    • 79952386187 scopus 로고    scopus 로고
    • Human-specific loss of regulatory DNA and the evolution of human-specific traits
    • McLean CY, Reno PL, Pollen AA, Bassan AI, et al. 2011. Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471: 216–9.
    • (2011) Nature , vol.471 , pp. 216-219
    • McLean, C.Y.1    Reno, P.L.2    Pollen, A.A.3    Bassan, A.I.4
  • 25
    • 84864629645 scopus 로고    scopus 로고
    • Rapid turnover of long noncoding RNAs and the evolution of gene expression
    • Kutter C, Watt S, Stefflova K, Wilson MD, et al. 2012. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet 8: e1002841.
    • (2012) PLoS Genet , vol.8
    • Kutter, C.1    Watt, S.2    Stefflova, K.3    Wilson, M.D.4
  • 26
    • 77953062527 scopus 로고    scopus 로고
    • Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding
    • Schmidt D, Wilson MD, Ballester B, Schwalie PC, et al. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328: 1036–40.
    • (2010) Science , vol.328 , pp. 1036-1040
    • Schmidt, D.1    Wilson, M.D.2    Ballester, B.3    Schwalie, P.C.4
  • 27
    • 83855163414 scopus 로고    scopus 로고
    • Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence
    • Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13: 59–69.
    • (2012) Nat Rev Genet , vol.13 , pp. 59-69
    • Wittkopp, P.J.1    Kalay, G.2
  • 28
    • 79957967458 scopus 로고    scopus 로고
    • Natural genetic variation caused by small insertions and deletions in the human genome
    • Mills RE, Pittard WS, Mullaney JM, Farooq U, et al. 2011. Natural genetic variation caused by small insertions and deletions in the human genome. Genome Res 21: 830–9.
    • (2011) Genome Res , vol.21 , pp. 830-839
    • Mills, R.E.1    Pittard, W.S.2    Mullaney, J.M.3    Farooq, U.4
  • 29
    • 33846978695 scopus 로고    scopus 로고
    • Relative impact of nucleotide and copy number variation on gene expression phenotypes
    • Stranger BE, Forrest MS, Dunning M, Ingle CE, et al. 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848–53.
    • (2007) Science , vol.315 , pp. 848-853
    • Stranger, B.E.1    Forrest, M.S.2    Dunning, M.3    Ingle, C.E.4
  • 30
    • 84949599739 scopus 로고    scopus 로고
    • Abundant contribution of short tandem repeats to gene expression variation in humans
    • Gymrek M, Willems T, Guilmatre A, Zeng H, et al. 2016. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat Genet 48: 22–9.
    • (2016) Nat Genet , vol.48 , pp. 22-29
    • Gymrek, M.1    Willems, T.2    Guilmatre, A.3    Zeng, H.4
  • 31
    • 33846027485 scopus 로고    scopus 로고
    • Human-specific insertions and deletions inferred from mammalian genome sequences
    • Chen FC, Chen CJ, Li WH, Chuang TJ. 2007. Human-specific insertions and deletions inferred from mammalian genome sequences. Genome Res 17: 16–22.
    • (2007) Genome Res , vol.17 , pp. 16-22
    • Chen, F.C.1    Chen, C.J.2    Li, W.H.3    Chuang, T.J.4
  • 32
    • 23744458086 scopus 로고    scopus 로고
    • Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes
    • Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034–50.
    • (2005) Genome Res , vol.15 , pp. 1034-1050
    • Siepel, A.1    Bejerano, G.2    Pedersen, J.S.3    Hinrichs, A.S.4
  • 34
    • 77649331986 scopus 로고    scopus 로고
    • Insertion and deletion processes in recent human history
    • Sjodin P, Bataillon T, Schierup MH. 2010. Insertion and deletion processes in recent human history. PLoS ONE 5: e8650.
    • (2010) PLoS ONE , vol.5
    • Sjodin, P.1    Bataillon, T.2    Schierup, M.H.3
  • 35
    • 33645798112 scopus 로고    scopus 로고
    • Genome-wide identification of human functional DNA using a neutral indel model
    • Lunter G, Ponting CP, Hein J. 2006. Genome-wide identification of human functional DNA using a neutral indel model. PLoS Comput Biol 2: e5.
    • (2006) PLoS Comput Biol , vol.2
    • Lunter, G.1    Ponting, C.P.2    Hein, J.3
  • 36
    • 78149408021 scopus 로고    scopus 로고
    • Massive turnover of functional sequence in human and other mammalian genomes
    • Meader S, Ponting CP, Lunter G. 2010. Massive turnover of functional sequence in human and other mammalian genomes. Genome Res 20: 1335–43.
    • (2010) Genome Res , vol.20 , pp. 1335-1343
    • Meader, S.1    Ponting, C.P.2    Lunter, G.3
  • 38
    • 1842717956 scopus 로고    scopus 로고
    • Occurrence and consequences of coding sequence insertions and deletions in Mammalian genomes
    • Taylor MS, Ponting CP, Copley RR. 2004. Occurrence and consequences of coding sequence insertions and deletions in Mammalian genomes. Genome Res 14: 555–66.
    • (2004) Genome Res , vol.14 , pp. 555-566
    • Taylor, M.S.1    Ponting, C.P.2    Copley, R.R.3
  • 39
    • 84905455429 scopus 로고    scopus 로고
    • 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage
    • Rands CM, Meader S, Ponting CP, Lunter G. 2014. 8.2% of the human genome is constrained: variation in rates of turnover across functional element classes in the human lineage. PLoS Genet 10: e1004525.
    • (2014) PLoS Genet , vol.10
    • Rands, C.M.1    Meader, S.2    Ponting, C.P.3    Lunter, G.4
  • 41
    • 84922295278 scopus 로고    scopus 로고
    • Enhancer evolution across 20 mammalian species
    • Villar D, Berthelot C, Aldridge S, Rayner TF, et al. 2015. Enhancer evolution across 20 mammalian species. Cell 160: 554–66.
    • (2015) Cell , vol.160 , pp. 554-566
    • Villar, D.1    Berthelot, C.2    Aldridge, S.3    Rayner, T.F.4
  • 42
    • 34249098071 scopus 로고    scopus 로고
    • Mammalian RNA polymerase II core promoters: insights from genome-wide studies
    • Sandelin A, Carninci P, Lenhard B, Ponjavic J, et al. 2007. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8: 424–36.
    • (2007) Nat Rev Genet , vol.8 , pp. 424-436
    • Sandelin, A.1    Carninci, P.2    Lenhard, B.3    Ponjavic, J.4
  • 43
    • 84942883573 scopus 로고    scopus 로고
    • The frequent evolutionary birth and death of functional promoters in mouse and human
    • Young RS, Hayashizaki Y, Andersson R, Sandelin A, et al. 2015. The frequent evolutionary birth and death of functional promoters in mouse and human. Genome Res 25: 1546–57.
    • (2015) Genome Res , vol.25 , pp. 1546-1557
    • Young, R.S.1    Hayashizaki, Y.2    Andersson, R.3    Sandelin, A.4
  • 44
    • 67349173665 scopus 로고    scopus 로고
    • The regulated retrotransposon transcriptome of mammalian cells
    • Faulkner GJ, Kimura Y, Daub CO, Wani S, et al. 2009. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet 41: 563–71.
    • (2009) Nat Genet , vol.41 , pp. 563-571
    • Faulkner, G.J.1    Kimura, Y.2    Daub, C.O.3    Wani, S.4
  • 45
    • 84901651635 scopus 로고    scopus 로고
    • Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance
    • Fort A, Hashimoto K, Yamada D, Salimullah M, et al. 2014. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46: 558–66.
    • (2014) Nat Genet , vol.46 , pp. 558-566
    • Fort, A.1    Hashimoto, K.2    Yamada, D.3    Salimullah, M.4
  • 46
    • 46449113997 scopus 로고    scopus 로고
    • The biological effects of simple tandem repeats: lessons from the repeat expansion diseases
    • Usdin K. 2008. The biological effects of simple tandem repeats: lessons from the repeat expansion diseases. Genome Res 18: 1011–9.
    • (2008) Genome Res , vol.18 , pp. 1011-1019
    • Usdin, K.1
  • 47
    • 34848865680 scopus 로고    scopus 로고
    • A macaque's-eye view of human insertions and deletions: differences in mechanisms
    • Kvikstad EM, Tyekucheva S, Chiaromonte F, Makova KD. 2007. A macaque's-eye view of human insertions and deletions: differences in mechanisms. PLoS Comput Biol 3: 1772–82.
    • (2007) PLoS Comput Biol , vol.3 , pp. 1772-1782
    • Kvikstad, E.M.1    Tyekucheva, S.2    Chiaromonte, F.3    Makova, K.D.4
  • 48
    • 34548337129 scopus 로고    scopus 로고
    • The majority of recent short DNA insertions in the human genome are tandem duplications
    • Messer PW, Arndt PF. 2007. The majority of recent short DNA insertions in the human genome are tandem duplications. Mol Biol Evol 24: 1190–7.
    • (2007) Mol Biol Evol , vol.24 , pp. 1190-1197
    • Messer, P.W.1    Arndt, P.F.2
  • 49
    • 33748271469 scopus 로고    scopus 로고
    • An initial map of insertion and deletion (INDEL) variation in the human genome
    • Mills RE, Luttig CT, Larkins CE, Beauchamp A, et al. 2006. An initial map of insertion and deletion (INDEL) variation in the human genome. Genome Res 16: 1182–90.
    • (2006) Genome Res , vol.16 , pp. 1182-1190
    • Mills, R.E.1    Luttig, C.T.2    Larkins, C.E.3    Beauchamp, A.4
  • 50
    • 54949108148 scopus 로고    scopus 로고
    • Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs
    • Paten B, Herrero J, Beal K, Fitzgerald S, et al. 2008. Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res 18: 1814–28.
    • (2008) Genome Res , vol.18 , pp. 1814-1828
    • Paten, B.1    Herrero, J.2    Beal, K.3    Fitzgerald, S.4
  • 52
    • 46249095233 scopus 로고    scopus 로고
    • Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis
    • Loytynoja A, Goldman N. 2008. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320: 1632–5.
    • (2008) Science , vol.320 , pp. 1632-1635
    • Loytynoja, A.1    Goldman, N.2
  • 53
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • Consortium EP. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74.
    • (2012) Nature , vol.489 , pp. 57-74
    • Consortium, E.P.1
  • 54
    • 34249818182 scopus 로고    scopus 로고
    • Tissue-specific transcriptional regulation has diverged significantly between human and mouse
    • Odom DT, Dowell RD, Jacobsen ES, Gordon W, et al. 2007. Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39: 730–2.
    • (2007) Nat Genet , vol.39 , pp. 730-732
    • Odom, D.T.1    Dowell, R.D.2    Jacobsen, E.S.3    Gordon, W.4
  • 55
    • 84881141882 scopus 로고    scopus 로고
    • Cooperativity and rapid evolution of cobound transcription factors in closely related mammals
    • Stefflova K, Thybert D, Wilson MD, Streeter I, et al. 2013. Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell 154: 530–40.
    • (2013) Cell , vol.154 , pp. 530-540
    • Stefflova, K.1    Thybert, D.2    Wilson, M.D.3    Streeter, I.4
  • 56
    • 33744824906 scopus 로고    scopus 로고
    • Evolutionary turnover of mammalian transcription start sites
    • Frith MC, Ponjavic J, Fredman D, Kai C, et al. 2006. Evolutionary turnover of mammalian transcription start sites. Genome Res 16: 713–22.
    • (2006) Genome Res , vol.16 , pp. 713-722
    • Frith, M.C.1    Ponjavic, J.2    Fredman, D.3    Kai, C.4
  • 57
    • 77954100084 scopus 로고    scopus 로고
    • Transposable elements have rewired the core regulatory network of human embryonic stem cells
    • Kunarso G, Chia NY, Jeyakani J, Hwang C, et al. 2010. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42: 631–4.
    • (2010) Nat Genet , vol.42 , pp. 631-634
    • Kunarso, G.1    Chia, N.Y.2    Jeyakani, J.3    Hwang, C.4
  • 58
    • 84863393570 scopus 로고    scopus 로고
    • Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages
    • Schmidt D, Schwalie PC, Wilson MD, Ballester B, et al. 2012. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148: 335–48.
    • (2012) Cell , vol.148 , pp. 335-348
    • Schmidt, D.1    Schwalie, P.C.2    Wilson, M.D.3    Ballester, B.4
  • 59
    • 84864462544 scopus 로고    scopus 로고
    • A map of the cis-regulatory sequences in the mouse genome
    • Shen Y, Yue F, McCleary DF, Ye Z, et al. 2012. A map of the cis-regulatory sequences in the mouse genome. Nature 488: 116–20.
    • (2012) Nature , vol.488 , pp. 116-120
    • Shen, Y.1    Yue, F.2    McCleary, D.F.3    Ye, Z.4
  • 60
    • 84857251182 scopus 로고    scopus 로고
    • CTCF: insights into insulator function during development
    • Herold M, Bartkuhn M, Renkawitz R. 2012. CTCF: insights into insulator function during development. Development 139: 1045–57.
    • (2012) Development , vol.139 , pp. 1045-1057
    • Herold, M.1    Bartkuhn, M.2    Renkawitz, R.3
  • 61
    • 45149084413 scopus 로고    scopus 로고
    • Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions
    • Guelen L, Pagie L, Brasset E, Meuleman W, et al. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453: 948–51.
    • (2008) Nature , vol.453 , pp. 948-951
    • Guelen, L.1    Pagie, L.2    Brasset, E.3    Meuleman, W.4
  • 62
    • 84876940752 scopus 로고    scopus 로고
    • Divergence of mammalian higher order chromatin structure is associated with developmental loci
    • Chambers EV, Bickmore WA, Semple CA. 2013. Divergence of mammalian higher order chromatin structure is associated with developmental loci. PLoS Comput Biol 9: e1003017.
    • (2013) PLoS Comput Biol , vol.9
    • Chambers, E.V.1    Bickmore, W.A.2    Semple, C.A.3
  • 63
    • 84911462077 scopus 로고    scopus 로고
    • A comparative encyclopedia of DNA elements in the mouse genome
    • Yue F, Cheng Y, Breschi A, Vierstra J, et al. 2014. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515: 355–64.
    • (2014) Nature , vol.515 , pp. 355-364
    • Yue, F.1    Cheng, Y.2    Breschi, A.3    Vierstra, J.4
  • 64
    • 84897406127 scopus 로고    scopus 로고
    • A promoter-level mammalian expression atlas
    • Forrest AR, Kawaji H, Rehli M, Baillie JK, et al. 2014. A promoter-level mammalian expression atlas. Nature 507: 462–70.
    • (2014) Nature , vol.507 , pp. 462-470
    • Forrest, A.R.1    Kawaji, H.2    Rehli, M.3    Baillie, J.K.4
  • 65
    • 5444236355 scopus 로고    scopus 로고
    • Positive selection on the human genome
    • Vallender EJ, Lahn BT. 2004. Positive selection on the human genome. Hum Mol Genet 13: R245–54.
    • (2004) Hum Mol Genet , vol.13 , pp. 245-254
    • Vallender, E.J.1    Lahn, B.T.2
  • 66
    • 34548346860 scopus 로고    scopus 로고
    • Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution
    • Haygood R, Fedrigo O, Hanson B, Yokoyama KD, et al. 2007. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nat Genet 39: 1140–4.
    • (2007) Nat Genet , vol.39 , pp. 1140-1144
    • Haygood, R.1    Fedrigo, O.2    Hanson, B.3    Yokoyama, K.D.4
  • 67
    • 55049123524 scopus 로고    scopus 로고
    • Rapidly evolving human promoter regions
    • author reply 3–4
    • Taylor MS, Massingham T, Hayashizaki Y, Carninci P, et al. 2008. Rapidly evolving human promoter regions. Nat Genet 40: 1262–3; author reply 3–4.
    • (2008) Nat Genet , vol.40 , pp. 1262-1263
    • Taylor, M.S.1    Massingham, T.2    Hayashizaki, Y.3    Carninci, P.4
  • 68
    • 84924072858 scopus 로고    scopus 로고
    • Lagging-strand replication shapes the mutational landscape of the genome
    • Reijns MA, Kemp H, Ding J, de Proce SM, et al. 2015. Lagging-strand replication shapes the mutational landscape of the genome. Nature 518: 502–6.
    • (2015) Nature , vol.518 , pp. 502-506
    • Reijns, M.A.1    Kemp, H.2    Ding, J.3    de Proce, S.M.4
  • 69
    • 84922361752 scopus 로고    scopus 로고
    • Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals
    • Wong ES, Thybert D, Schmitt BM, Stefflova K, et al. 2015. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals. Genome Res 25: 167–78.
    • (2015) Genome Res , vol.25 , pp. 167-178
    • Wong, E.S.1    Thybert, D.2    Schmitt, B.M.3    Stefflova, K.4
  • 70
    • 84865708757 scopus 로고    scopus 로고
    • An expansive human regulatory lexicon encoded in transcription factor footprints
    • Neph S, Vierstra J, Stergachis AB, Reynolds AP, et al. 2012. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489: 83–90.
    • (2012) Nature , vol.489 , pp. 83-90
    • Neph, S.1    Vierstra, J.2    Stergachis, A.B.3    Reynolds, A.P.4
  • 71
    • 84911470871 scopus 로고    scopus 로고
    • Conservation of trans-acting circuitry during mammalian regulatory evolution
    • Stergachis AB, Neph S, Sandstrom R, Haugen E, et al. 2014. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515: 365–70.
    • (2014) Nature , vol.515 , pp. 365-370
    • Stergachis, A.B.1    Neph, S.2    Sandstrom, R.3    Haugen, E.4
  • 72
    • 54249099196 scopus 로고    scopus 로고
    • Species-specific transcription in mice carrying human chromosome 21
    • Wilson MD, Barbosa-Morais NL, Schmidt D, Conboy CM, et al. 2008. Species-specific transcription in mice carrying human chromosome 21. Science 322: 434–8.
    • (2008) Science , vol.322 , pp. 434-438
    • Wilson, M.D.1    Barbosa-Morais, N.L.2    Schmidt, D.3    Conboy, C.M.4
  • 73
    • 80054728495 scopus 로고    scopus 로고
    • Animal transcription networks as highly connected, quantitative continua
    • Biggin MD. 2011. Animal transcription networks as highly connected, quantitative continua. Dev Cell 21: 611–26.
    • (2011) Dev Cell , vol.21 , pp. 611-626
    • Biggin, M.D.1
  • 74
    • 77950566643 scopus 로고    scopus 로고
    • Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species
    • Bradley RK, Li XY, Trapnell C, Davidson S, et al. 2010. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLoS Biol 8: e1000343.
    • (2010) PLoS Biol , vol.8
    • Bradley, R.K.1    Li, X.Y.2    Trapnell, C.3    Davidson, S.4
  • 75
    • 84922313916 scopus 로고    scopus 로고
    • Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways
    • Ballester B, Medina-Rivera A, Schmidt D, Gonzalez-Porta M, et al. 2014. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways. eLife 3: e02626.
    • (2014) eLife , vol.3
    • Ballester, B.1    Medina-Rivera, A.2    Schmidt, D.3    Gonzalez-Porta, M.4
  • 76
    • 84954097140 scopus 로고    scopus 로고
    • Enhancer turnover is associated with a divergent transcriptional response to glucocorticoid in mouse and human macrophages
    • Jubb AW, Young RS, Hume DA, Bickmore WA. 2016. Enhancer turnover is associated with a divergent transcriptional response to glucocorticoid in mouse and human macrophages. J Immunol 196: 813–22.
    • (2016) J Immunol , vol.196 , pp. 813-822
    • Jubb, A.W.1    Young, R.S.2    Hume, D.A.3    Bickmore, W.A.4
  • 77
    • 84911939594 scopus 로고    scopus 로고
    • Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution
    • Vierstra J, Rynes E, Sandstrom R, Zhang M, et al. 2014. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346: 1007–12.
    • (2014) Science , vol.346 , pp. 1007-1012
    • Vierstra, J.1    Rynes, E.2    Sandstrom, R.3    Zhang, M.4
  • 78
    • 84866775366 scopus 로고    scopus 로고
    • Evidence of abundant purifying selection in humans for recently acquired regulatory functions
    • Ward LD, Kellis M. 2012. Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337: 1675–8.
    • (2012) Science , vol.337 , pp. 1675-1678
    • Ward, L.D.1    Kellis, M.2
  • 79
    • 84864073098 scopus 로고    scopus 로고
    • Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection
    • Shibata Y, Sheffield NC, Fedrigo O, Babbitt CC, et al. 2012. Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genet 8: e1002789.
    • (2012) PLoS Genet , vol.8
    • Shibata, Y.1    Sheffield, N.C.2    Fedrigo, O.3    Babbitt, C.C.4
  • 80
    • 84879911829 scopus 로고    scopus 로고
    • The evolution of lineage-specific regulatory activities in the human embryonic limb
    • Cotney J, Leng J, Yin J, Reilly SK, et al. 2013. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154: 185–96.
    • (2013) Cell , vol.154 , pp. 185-196
    • Cotney, J.1    Leng, J.2    Yin, J.3    Reilly, S.K.4
  • 81
    • 84924561748 scopus 로고    scopus 로고
    • Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis
    • Reilly SK, Yin J, Ayoub AE, Emera D, et al. 2015. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347: 1155–9.
    • (2015) Science , vol.347 , pp. 1155-1159
    • Reilly, S.K.1    Yin, J.2    Ayoub, A.E.3    Emera, D.4
  • 82
    • 84861977900 scopus 로고    scopus 로고
    • Comparative epigenomic annotation of regulatory DNA
    • Xiao S, Xie D, Cao X, Yu P, et al. 2012. Comparative epigenomic annotation of regulatory DNA. Cell 149: 1381–92.
    • (2012) Cell , vol.149 , pp. 1381-1392
    • Xiao, S.1    Xie, D.2    Cao, X.3    Yu, P.4
  • 83
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 84
    • 0347766006 scopus 로고    scopus 로고
    • Elevated rates of protein secretion, evolution, and disease among tissue-specific genes
    • Winter EE, Goodstadt L, Ponting CP. 2004. Elevated rates of protein secretion, evolution, and disease among tissue-specific genes. Genome Res 14: 54–61.
    • (2004) Genome Res , vol.14 , pp. 54-61
    • Winter, E.E.1    Goodstadt, L.2    Ponting, C.P.3
  • 85
    • 84859993180 scopus 로고    scopus 로고
    • Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
    • Schroder K, Irvine KM, Taylor MS, Bokil NJ, et al. 2012. Conservation and divergence in toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci U S A 109: E944–53.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 53
    • Schroder, K.1    Irvine, K.M.2    Taylor, M.S.3    Bokil, N.J.4
  • 86
    • 84935833067 scopus 로고    scopus 로고
    • Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project
    • Andersson L, Archibald AL, Bottema CD, Brauning R, et al. 2015. Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol 16: 57.
    • (2015) Genome Biol , vol.16 , pp. 57
    • Andersson, L.1    Archibald, A.L.2    Bottema, C.D.3    Brauning, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.