메뉴 건너뛰기




Volumn 53, Issue 6, 2015, Pages 2975-2986

Substance dependence constrained sparse NMF for hyperspectral unmixing

Author keywords

Adaptive decision; hyperspectral unmixing; mixed pixel; substance dependence

Indexed keywords

FACTORIZATION; INDEPENDENT COMPONENT ANALYSIS; NEAREST NEIGHBOR SEARCH; PIXELS; REMOTE SENSING; SPECTROSCOPY;

EID: 85027928326     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2014.2365953     Document Type: Article
Times cited : (64)

References (52)
  • 1
    • 0021892045 scopus 로고
    • Imaging spectrometry for earth remote sensing
    • Jun.
    • J. Solomon and B. Rock, "Imaging spectrometry for earth remote sensing," Science, vol. 228, no. 4704, pp. 1147-1153, Jun. 1985.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Solomon, J.1    Rock, B.2
  • 2
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr.
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 3
    • 84871790849 scopus 로고    scopus 로고
    • Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery
    • Jan.
    • B. Luo, C. Yang, C. Jocelyn, and L. Zhang, "Crop yield estimation based on unsupervised linear unmixing of multidate hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 162-173, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 162-173
    • Luo, B.1    Yang, C.2    Jocelyn, C.3    Zhang, L.4
  • 4
    • 84885022681 scopus 로고    scopus 로고
    • Target detection based on a dynamic subspace
    • Jan.
    • B. Du and L. Zhang, "Target detection based on a dynamic subspace," Pattern Recognit., vol. 47, no. 1, pp. 344-358, Jan. 2014.
    • (2014) Pattern Recognit. , vol.47 , Issue.1 , pp. 344-358
    • Du, B.1    Zhang, L.2
  • 5
    • 84902073586 scopus 로고    scopus 로고
    • A discriminative metric learning based anomaly detection method
    • Nov.
    • B. Du and L. Zhang, "A discriminative metric learning based anomaly detection method," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 11, pp. 6844-6857, Nov. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.11 , pp. 6844-6857
    • Du, B.1    Zhang, L.2
  • 8
    • 80455176882 scopus 로고    scopus 로고
    • Foreword to the special issue on spectral unmixing of remotely sensed data
    • Nov.
    • A. Plaza, Q. Du, J. M. Bioucas-Dias, X. Jia, and F. A. Kruse, "Foreword to the special issue on spectral unmixing of remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4103-4110, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4103-4110
    • Plaza, A.1    Du, Q.2    Bioucas-Dias, J.M.3    Jia, X.4    Kruse, F.A.5
  • 9
    • 84880058339 scopus 로고    scopus 로고
    • Spectral unmixing in multiple-kernel Hilbert space for hyperspectral imagery
    • Jul.
    • Y. Gu, S.Wang, and X. Jia, "Spectral unmixing in multiple-kernel Hilbert space for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 7, pp. 3968-3981, Jul. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.7 , pp. 3968-3981
    • Gu, Y.1    Wang, S.2    Jia, X.3
  • 11
    • 84877927996 scopus 로고    scopus 로고
    • An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing
    • Apr.
    • N. Wang, B. Du, and L. Zhang, "An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 6, no. 2, pp. 554-569, Apr. 2013.
    • (2013) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.6 , Issue.2 , pp. 554-569
    • Wang, N.1    Du, B.2    Zhang, L.3
  • 12
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • JPL Publication 93-26
    • J. W. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Summaries 4th Annu. JPL Airborne Geosci. Workshop, 1993, vol. 1, pp. 11-14, JPL Publication 93-26.
    • (1993) Proc. Summaries 4th Annu. JPL Airborne Geosci. Workshop , vol.1 , pp. 11-14
    • Boardman, J.W.1
  • 13
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E.Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE's Int. Symp. Opt. Sci., Eng. Instrum., 1999, pp. 266-275.
    • (1999) Proc. SPIE's Int. Symp. Opt. Sci., Eng. Instrum. , pp. 266-275
    • Winter, M.E.1
  • 14
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr.
    • J. M. Nascimento and J. M. Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Dias, J.M.2
  • 15
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct.
    • C. Chang, C. Wu, W. Liu, and Y. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.1    Wu, C.2    Liu, W.3    Ouyang, Y.4
  • 16
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar.
    • D. C. Heinz et al., "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, no. 6755, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 19
    • 0036762725 scopus 로고    scopus 로고
    • Spatial/spectral endmember extraction by multidimensional morphological operations
    • Sep.
    • A. Plaza, P. Martinez, R. Pérez, and J. Plaza, "Spatial/spectral endmember extraction by multidimensional morphological operations," IEEE Trans. Geosci. Remote Sens., vol. 40, no. 9, pp. 2025-2041, Sep. 2002.
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.9 , pp. 2025-2041
    • Plaza, A.1    Martinez, P.2    Pérez, R.3    Plaza, J.4
  • 20
    • 67949098957 scopus 로고    scopus 로고
    • Spatial preprocessing for endmember extraction
    • Aug.
    • M. Zortea and A. Plaza, "Spatial preprocessing for endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2679-2693, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2679-2693
    • Zortea, M.1    Plaza, A.2
  • 21
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
    • Jul.
    • C. Jutten and J. Herault, "Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture," Signal Process., vol. 24, no. 1, pp. 1-10, Jul. 1991.
    • (1991) Signal Process. , vol.24 , Issue.1 , pp. 1-10
    • Jutten, C.1    Herault, J.2
  • 22
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data
    • Jan.
    • J. M. Nascimento and J. M. Dias, "Does independent component analysis play a role in unmixing hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.1    Dias, J.M.2
  • 23
    • 79957650412 scopus 로고    scopus 로고
    • Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints
    • Jun.
    • W. Xia, X. Liu, B.Wang, and L. Zhang, "Independent component analysis for blind unmixing of hyperspectral imagery with additional constraints," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2165-2179, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2165-2179
    • Xia, W.1    Liu, X.2    Wang, B.3    Zhang, L.4
  • 24
    • 33847703873 scopus 로고    scopus 로고
    • Unsupervised classification of remote sensing imagery with non-negative matrix factorization
    • C. Liou and K. Yang, "Unsupervised classification of remote sensing imagery with non-negative matrix factorization," in Proc. ICONIP, 2005, pp. 280-285.
    • (2005) Proc. ICONIP , pp. 280-285
    • Liou, C.1    Yang, K.2
  • 25
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec.
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 26
    • 80051544749 scopus 로고    scopus 로고
    • Non-negative patch alignment framework
    • Aug.
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "Non-negative patch alignment framework," IEEE Trans. Neural Netw., vol. 22, no. 8, pp. 1218-1230, Aug. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.8 , pp. 1218-1230
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 27
    • 79959579027 scopus 로고    scopus 로고
    • Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent," IEEE Trans. Image Process., vol. 20, no. 7, pp. 2030-2048, 2011.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.7 , pp. 2030-2048
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 29
    • 84861164231 scopus 로고    scopus 로고
    • NeNMF: An optimal gradient method for nonnegative matrix factorization
    • Jun.
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "NeNMF: An optimal gradient method for nonnegative matrix factorization," IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2882-2898, Jun. 2012.
    • (2012) IEEE Trans. Signal Process. , vol.60 , Issue.6 , pp. 2882-2898
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 30
    • 84865442402 scopus 로고    scopus 로고
    • Online nonnegative matrix factorization with robust stochastic approximation
    • Jul.
    • N. Guan, D. Tao, Z. Luo, and B. Yuan, "Online nonnegative matrix factorization with robust stochastic approximation," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7, pp. 1087-1099, Jul. 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.7 , pp. 1087-1099
    • Guan, N.1    Tao, D.2    Luo, Z.3    Yuan, B.4
  • 31
    • 84886919021 scopus 로고    scopus 로고
    • Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization
    • N. Guan, L. Wei, Z. Luo, and D. Tao, "Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization," PloS one, vol. 8, no. 10, p. e77162, 2013.
    • (2013) PloS One , vol.8 , Issue.10
    • Guan, N.1    Wei, L.2    Luo, Z.3    Tao, D.4
  • 32
    • 84876153078 scopus 로고    scopus 로고
    • Variational regularized 2-D nonnegative matrix factorization
    • May
    • B. Gao,W. L.Woo, and S. S. Dlay, "Variational regularized 2-D nonnegative matrix factorization," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 703-716, May 2012.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.5 , pp. 703-716
    • Gaow. Woo L, B.1    Dlay, S.S.2
  • 33
    • 84897028225 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with regularizations
    • Mar.
    • W. Ren, G. Li, D. Tu, and L. Jia, "Nonnegative matrix factorization with regularizations," IEEE J. Emerging Sel. Topics Circuits Syst., vol. 4, no. 1, pp. 153-164, Mar. 2014.
    • (2014) IEEE J. Emerging Sel. Topics Circuits Syst. , vol.4 , Issue.1 , pp. 153-164
    • Ren, W.1    Li, G.2    Tu, D.3    Jia, L.4
  • 34
    • 84900619417 scopus 로고    scopus 로고
    • Sparse manifold embedding tri-factor nonnegative matrix factorization
    • X. Pei, Z. Lv, and C. Chen, "Sparse manifold embedding tri-factor nonnegative matrix factorization," in Proc. GrC, 2013, pp. 231-235.
    • (2013) Proc. GrC , pp. 231-235
    • Pei, X.1    Lv, Z.2    Chen, C.3
  • 35
    • 84897981205 scopus 로고    scopus 로고
    • Evaluation of different algorithms of nonnegative matrix factorization in temporal psychovisual modulation
    • Apr.
    • J. Feng, X. Huo, L. Song, X. Yang, andW. Zhang, "Evaluation of different algorithms of nonnegative matrix factorization in temporal psychovisual modulation," IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 4, pp. 553-565, Apr. 2014.
    • (2014) IEEE Trans. Circuits Syst. Video Technol. , vol.24 , Issue.4 , pp. 553-565
    • Feng, J.1    Huo, X.2    Song, L.3    Yang, X.4    Zhang, W.5
  • 36
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Lin. Alg. Appl., vol. 416, no. 1, pp. 29-47, 2006.
    • (2006) Lin. Alg. Appl. , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 37
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar.
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 38
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 39
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, "Manifold regularized sparse NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 40
    • 84896314517 scopus 로고    scopus 로고
    • Double constrained NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, and Y. Yuan, "Double constrained NMF for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2746-2758, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2746-2758
    • Lu, X.1    Wu, H.2    Yuan, Y.3
  • 41
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
    • Nov.
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 43
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.-D.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 45
    • 0022219988 scopus 로고
    • A fuzzy k-nearest neighbor algorithm
    • Jul./Aug.
    • J. M. Keller, M. R. Gray, and J. A. Givens, "A fuzzy k-nearest neighbor algorithm," IEEE Trans. Syst.,Man Cybern., vol. SMC-15, no. 4, pp. 580-585, Jul./Aug. 1985.
    • (1985) IEEE Trans. Syst.,Man Cybern. , vol.SMC-15 , Issue.4 , pp. 580-585
    • Keller, J.M.1    Gray, M.R.2    Givens, J.A.3
  • 46
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 48
    • 72049109460 scopus 로고    scopus 로고
    • A variable splitting augmented Lagrangian approach to linear spectral unmixing
    • IEEE
    • J. M. Bioucas-Dias, "A variable splitting augmented Lagrangian approach to linear spectral unmixing," in Proc. 1st WHISPERS, 2009, pp. 1-4, IEEE.
    • (2009) Proc. 1st WHISPERS , pp. 1-4
    • Bioucas-Dias, J.M.1
  • 49
    • 0000113362 scopus 로고
    • The U.S. Geological survey digital spectral library: Version 1: 0.2 to 3.0 microns
    • Denvor, CO, USA, Open File Rep.
    • R. Clark, G. Swayze, A. Gallagher, T. King, and W. Calvin, "The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns," U.S. Geol. Surv., Denvor, CO, USA, Open File Rep., 1993.
    • (1993) U.S. Geol. Surv.
    • Clark, R.1    Swayze, G.2    Gallagher, A.3    King, T.4    Calvin, W.5
  • 50
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb.
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.