메뉴 건너뛰기




Volumn 51, Issue 7, 2013, Pages 3968-3981

Spectral unmixing in multiple-kernel hilbert space for hyperspectral imagery

Author keywords

Hyperspectral imagery; multiple kernel learning (MKL); reproducing kernel Hilbert space (RKHS); spectral unmixing; support vector machines (SVMs)

Indexed keywords

HYPER-SPECTRAL IMAGERIES; MULTIPLE-KERNEL LEARNING (MKL); REPRODUCING KERNEL HILBERT SPACES; SPECTRAL UNMIXING; SUPPORT VECTOR MACHINE (SVMS);

EID: 84880058339     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2012.2227757     Document Type: Article
Times cited : (28)

References (47)
  • 1
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image analysis
    • Jan.
    • D. Landgrebe, "Hyperspectral image analysis," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 2
    • 69549138948 scopus 로고    scopus 로고
    • Geometric and statistical spectral unmixing for subpixel target detection
    • Edinburgh, U.K.
    • P. Yuen, G. Bishop, and A. Blagg, "Geometric and statistical spectral unmixing for subpixel target detection," in Proc. 2nd EMRS DTC Tech. Conf., Edinburgh, U.K., 2005, p. B17.
    • (2005) Proc. 2nd EMRS DTC Tech. Conf.
    • Yuen, P.1    Bishop, G.2    Blagg, A.3
  • 3
    • 1642433367 scopus 로고    scopus 로고
    • Examining hyperspectral unmixing error reduction due to stepwise unmixing
    • M. E. Winter, P. G. Lucey, and D. Steutel, "Examining hyperspectral unmixing error reduction due to stepwise unmixing," in Proc. SPIE, 2002, vol. 5093, pp. 380-389.
    • (2002) Proc. SPIE , vol.5093 , pp. 380-389
    • Winter, M.E.1    Lucey, P.G.2    Steutel, D.3
  • 4
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.874135, 1677768
    • J. Wang and C.-I. Chang, "Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006. (Pubitemid 44321553)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 5
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDER: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • M. E. Winter, "N-FINDER: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE-Image Spectrometry V, 1999, vol. 3453, pp. 266-277.
    • (1999) Proc. SPIE-Image Spectrometry v , vol.3453 , pp. 266-277
    • Winter, M.E.1
  • 7
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar.
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 8
    • 61349196839 scopus 로고    scopus 로고
    • Support vector machine-based endmember extraction
    • Mar.
    • A. M. Fillippi and R. Archibald, "Support vector machine-based endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 771-791, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 771-791
    • Fillippi, A.M.1    Archibald, R.2
  • 9
    • 80455176882 scopus 로고    scopus 로고
    • Foreword to the special issue on spectral unmixing of remotely sensed data
    • Nov.
    • A. Plaza, Q. Du, J. M. Bioucas-Dias, X. Jia, and F. A. Kruse, "Foreword to the special issue on spectral unmixing of remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4103-4110, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4103-4110
    • Plaza, A.1    Du, Q.2    Bioucas-Dias, J.M.3    Jia, X.4    Kruse, F.A.5
  • 10
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, "Spectral unmixing," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002. (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 11
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 12
    • 58149483476 scopus 로고    scopus 로고
    • Spectral unmixing with negative and superunity abundances for subpixel anomaly detection
    • Jan.
    • O. Duran and M. Petrou, "Spectral unmixing with negative and superunity abundances for subpixel anomaly detection," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 152-156, Jan. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.1 , pp. 152-156
    • Duran, O.1    Petrou, M.2
  • 14
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb.
    • X. Liu, W. Xia, B. Wang, and L. Zhang, "An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4
  • 15
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan.
    • S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 16
    • 0034270699 scopus 로고    scopus 로고
    • Linear spectral mixture models and support vector machines for remote sensing
    • Sep.
    • M. Brown, H. G. Lewis, and S. R. Gunn, "Linear spectral mixture models and support vector machines for remote sensing," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 5, pp. 2346-2360, Sep. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , Issue.5 , pp. 2346-2360
    • Brown, M.1    Lewis, H.G.2    Gunn, S.R.3
  • 17
    • 78049290930 scopus 로고    scopus 로고
    • A novel technique for subpixel image classification based on support vector machines
    • Nov.
    • F. Bovolo, L. Bruzzone, and L. Carlin, "A novel technique for subpixel image classification based on support vector machines," IEEE Trans. Image Process., vol. 19, no. 11, pp. 2983-2999, Nov. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2983-2999
    • Bovolo, F.1    Bruzzone, L.2    Carlin, L.3
  • 18
    • 67651155779 scopus 로고    scopus 로고
    • Integration of soft and hard classification using extended support vector machines
    • Jul.
    • L. Wang and X. Jia, "Integration of soft and hard classification using extended support vector machines," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 543-547, Jul. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.3 , pp. 543-547
    • Wang, L.1    Jia, X.2
  • 19
    • 78649251182 scopus 로고    scopus 로고
    • Controlled spectral unmixing using extended support vector machines
    • X. Jia, C. Dey, D. Fraser, L. Lymburner, and A. Lewis, "Controlled spectral unmixing using extended support vector machines," in Proc. 2nd WHISPERS, 2010, pp. 1-4.
    • (2010) Proc. 2nd WHISPERS , pp. 1-4
    • Jia, X.1    Dey, C.2    Fraser, D.3    Lymburner, L.4    Lewis, A.5
  • 20
    • 80455122749 scopus 로고    scopus 로고
    • SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification
    • Nov.
    • F. A. Mianji and Y. Zhang, "SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4318-4327, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4318-4327
    • Mianji, F.A.1    Zhang, Y.2
  • 21
    • 79957439842 scopus 로고    scopus 로고
    • Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution
    • Jun.
    • A. Villa, J. Chanussot, J. A. Benediktsson, and C. Jutten, "Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 521-533, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 521-533
    • Villa, A.1    Chanussot, J.2    Benediktsson, J.A.3    Jutten, C.4
  • 22
    • 33745713885 scopus 로고    scopus 로고
    • Increasing soft classification accuracy through the use of an ensemble of classifiers
    • Jul.
    • H. T. X. Doan and G. M. Foody, "Increasing soft classification accuracy through the use of an ensemble of classifiers," in Proc. IEEE IGARSS, Jul. 2005, vol. 1, pp. 486-489.
    • (2005) Proc. IEEE IGARSS , vol.1 , pp. 486-489
    • Doan, H.T.X.1    Foody, G.M.2
  • 24
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 25
    • 8844263749 scopus 로고    scopus 로고
    • A statistical framework for genomic data fusion
    • DOI 10.1093/bioinformatics/bth294
    • G. Lanckriet, T. De Bie, N. Cristianini, M. Jordan, and W. Noble, "A statistical framework for genomic data fusion," Bioinformatics, vol. 20, no. 16, pp. 2626-2635, Nov. 2004. (Pubitemid 39530149)
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2626-2635
    • Lanckriet, G.R.G.1    De Bie, T.2    Cristianini, N.3    Jordan, M.I.4    Noble, S.5
  • 26
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Feb.
    • M. Gönen and E. Alpayd?n, "Multiple kernel learning algorithms," J. Mach. Learn. Res., vol. 12, pp. 2211-2268, Feb. 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydn, E.2
  • 28
    • 77957001686 scopus 로고    scopus 로고
    • Learning relevant image features with multiple kernel classification
    • Oct.
    • D. Tuia, G. Matasci, G. Camps-Valls, and M. Kanevski, "Learning relevant image features with multiple kernel classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3780-3791, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3780-3791
    • Tuia, D.1    Matasci, G.2    Camps-Valls, G.3    Kanevski, M.4
  • 32
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • J. Mercer, "Functions of positive and negative type and their connection with the theory of integral equations," Philos. Trans. R. Soc. Lond., Ser. A, vol. 209, pp. 415-446, 1909.
    • (1909) Philos. Trans. R. Soc. Lond., Ser. A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 33
    • 84862993024 scopus 로고    scopus 로고
    • Representative multiple kernel learning for classification in hyperspectral imagery
    • Jul.
    • Y. Gu, C. Wang, D. You, Y. Zhang, S. Wang, and Y. Zhang, "Representative multiple kernel learning for classification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2852-2865, Jul. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.7 , pp. 2852-2865
    • Gu, Y.1    Wang, C.2    You, D.3    Zhang, Y.4    Wang, S.5    Zhang, Y.6
  • 34
    • 77949784467 scopus 로고    scopus 로고
    • Sparse multiple kernel learning for signal processing applications
    • May
    • N. Subrahmanya and Y. C. Shin, "Sparse multiple kernel learning for signal processing applications," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 788-798, May 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.5 , pp. 788-798
    • Subrahmanya, N.1    Shin, Y.C.2
  • 36
    • 0032710687 scopus 로고    scopus 로고
    • Confidence in linear spectral unmixing of single pixels
    • Jan.
    • M. Petrou and P. Foschi, "Confidence in linear spectral unmixing of single pixels," IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1, pp. 624-626, Jan. 1999.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , Issue.1 , pp. 624-626
    • Petrou, M.1    Foschi, P.2
  • 38
    • 79955480657 scopus 로고    scopus 로고
    • Multiple kernel learning for dimensionality reduction
    • Jun.
    • Y. Lin, T. Liu, and C. Fuh, "Multiple kernel learning for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 6, pp. 1147-1160, Jun. 2011.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.6 , pp. 1147-1160
    • Lin, Y.1    Liu, T.2    Fuh, C.3
  • 39
    • 70449418439 scopus 로고    scopus 로고
    • Learning with kernels-support vector machines regularization
    • Cambridge, MA: MIT Press
    • B. Schölkopf and A. Smola, Learning With Kernels-Support Vector Machines, Regularization, Optimization and Beyond. Cambridge, MA: MIT Press, 2001.
    • (2001) Optimization and beyond
    • Schölkopf, B.1    Smola, A.2
  • 41
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • J. Ham, Y. Chen,M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 42
    • 15944411032 scopus 로고    scopus 로고
    • A collection of data for urban area characterization
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • P. Gamba, "A collection of data for urban area characterization, " in Proc. IEEE Int. Geosci. Remote Sens. Symp., Sep. 2004, vol. I, pp. 69-72. (Pubitemid 40438445)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.1 , pp. 69-72
    • Gamba, P.1
  • 43
    • 84863006273 scopus 로고
    • AVIRIS NW Indiana's Indian Pines [Online]. Available
    • AVIRIS NW Indiana's Indian Pines 1992 Data Set. [Online]. Available: https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
    • (1992) Data Set
  • 45
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
    • (2009) IEEE Trans. Signal Process. , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 46
    • 80455174042 scopus 로고    scopus 로고
    • A simplex volume maximization framework for hyperspectral endmember extraction
    • Nov.
    • T.-H. Chan, W.-K. Ma, A. Ambikapathi, and C.-Y. Chi, "A simplex volume maximization framework for hyperspectral endmember extraction," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4177-4193, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4177-4193
    • Chan, T.-H.1    Ma, W.-K.2    Ambikapathi, A.3    Chi, C.-Y.4
  • 47
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via L-1/2 sparsity-constrained nonnegative matrix factorization
    • Nov.
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, "Hyperspectral unmixing via L-1/2 sparsity-constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011. Universities
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.