-
1
-
-
77951983109
-
Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors
-
20237084,; PubMed Central PMCID: PMC2876594
-
Bottcher-Friebertshauser E, Freuer C, Sielaff F, Schmidt S, Eickmann M, Uhlendorff J, et al. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. Journal of virology. 2010;84(11):5605–14. doi: 10.1128/JVI.00140-10 20237084; PubMed Central PMCID: PMC2876594.
-
(2010)
Journal of virology
, vol.84
, Issue.11
, pp. 5605-5614
-
-
Bottcher-Friebertshauser, E.1
Freuer, C.2
Sielaff, F.3
Schmidt, S.4
Eickmann, M.5
Uhlendorff, J.6
-
2
-
-
0033697734
-
Retroviral Entry Mediated by Receptor Priming and Low pH Triggering of an Envelope Glycoprotein
-
1110673
-
Mothes W, Boerger AL, Narayan S, Cunningham JM, Young JAT, Retroviral Entry Mediated by Receptor Priming and Low pH Triggering of an Envelope Glycoprotein. Cell. 2000;103(4):679–89. doi: 10.1016/S0092-8674(00)00170-7 11106737
-
(2000)
Cell
, vol.103
, Issue.4
, pp. 679-689
-
-
Mothes, W.1
Boerger, A.L.2
Narayan, S.3
Cunningham, J.M.4
Young, J.A.T.5
-
3
-
-
70350322417
-
Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis
-
19706706, Epub 2009/08/27.; PubMed Central PMCID: PMCPMC2772765
-
Matsuyama S, Taguchi F, Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis. Journal of virology. 2009;83(21):11133–41. Epub 2009/08/27. doi: 10.1128/JVI.00959-09 19706706; PubMed Central PMCID: PMCPMC2772765.
-
(2009)
Journal of virology
, vol.83
, Issue.21
, pp. 11133-11141
-
-
Matsuyama, S.1
Taguchi, F.2
-
4
-
-
0025723997
-
Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV
-
1719235, Epub 1991/12/01.; PubMed Central PMCID: PMCPmc250787
-
Dveksler GS, Pensiero MN, Cardellichio CB, Williams RK, Jiang GS, Holmes KV, et al. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. Journal of virology. 1991;65(12):6881–91. Epub 1991/12/01. 1719235; PubMed Central PMCID: PMCPmc250787.
-
(1991)
Journal of virology
, vol.65
, Issue.12
, pp. 6881-6891
-
-
Dveksler, G.S.1
Pensiero, M.N.2
Cardellichio, C.B.3
Williams, R.K.4
Jiang, G.S.5
Holmes, K.V.6
-
5
-
-
0344395657
-
Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
-
14647384, Epub 2003/12/04
-
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–4. Epub 2003/12/04. doi: 10.1038/nature02145 14647384.
-
(2003)
Nature
, vol.426
, Issue.6965
, pp. 450-454
-
-
Li, W.1
Moore, M.J.2
Vasilieva, N.3
Sui, J.4
Wong, S.K.5
Berne, M.A.6
-
6
-
-
0026693135
-
Human aminopeptidase N is a receptor for human coronavirus 229E
-
1350662, Epub 1992/06/04
-
Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420–2. Epub 1992/06/04. doi: 10.1038/357420a0 1350662.
-
(1992)
Nature
, vol.357
, Issue.6377
, pp. 420-422
-
-
Yeager, C.L.1
Ashmun, R.A.2
Williams, R.K.3
Cardellichio, C.B.4
Shapiro, L.H.5
Look, A.T.6
-
7
-
-
84874996988
-
Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC
-
23486063, Epub 2013/03/15
-
Raj VS, Mou H, Smits SL, Dekkers DH, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–4. Epub 2013/03/15. doi: 10.1038/nature12005 23486063.
-
(2013)
Nature
, vol.495
, Issue.7440
, pp. 251-254
-
-
Raj, V.S.1
Mou, H.2
Smits, S.L.3
Dekkers, D.H.4
Muller, M.A.5
Dijkman, R.6
-
8
-
-
84878210363
-
TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium
-
2353665
-
Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, et al. TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium. Journal of virology. 2013;87(11):6150–60. doi: 10.1128/JVI.03372-12 23536651
-
(2013)
Journal of virology
, vol.87
, Issue.11
, pp. 6150-6160
-
-
Bertram, S.1
Dijkman, R.2
Habjan, M.3
Heurich, A.4
Gierer, S.5
Glowacka, I.6
-
9
-
-
84877339392
-
The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies
-
23468491, Epub 2013/03/08.; PubMed Central PMCID: PMCPmc3648152
-
Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Kramer-Kuhl A, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. Journal of virology. 2013;87(10):5502–11. Epub 2013/03/08. doi: 10.1128/JVI.00128-13 23468491; PubMed Central PMCID: PMCPmc3648152.
-
(2013)
Journal of virology
, vol.87
, Issue.10
, pp. 5502-5511
-
-
Gierer, S.1
Bertram, S.2
Kaup, F.3
Wrensch, F.4
Heurich, A.5
Kramer-Kuhl, A.6
-
10
-
-
79954628266
-
Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response
-
21325420, Epub 2011/02/18.; PubMed Central PMCID: PMCPmc3126222
-
Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. Journal of virology. 2011;85(9):4122–34. Epub 2011/02/18. doi: 10.1128/JVI.02232-10 21325420; PubMed Central PMCID: PMCPmc3126222.
-
(2011)
Journal of virology
, vol.85
, Issue.9
, pp. 4122-4134
-
-
Glowacka, I.1
Bertram, S.2
Muller, M.A.3
Allen, P.4
Soilleux, E.5
Pfefferle, S.6
-
11
-
-
84862908396
-
Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease
-
2199444
-
Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I, et al. Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease. Journal of virology. 2011;85(24):13363–72. doi: 10.1128/JVI.05300-11 21994442
-
(2011)
Journal of virology
, vol.85
, Issue.24
, pp. 13363-13372
-
-
Bertram, S.1
Glowacka, I.2
Müller, M.A.3
Lavender, H.4
Gnirss, K.5
Nehlmeier, I.6
-
12
-
-
59749083598
-
Estimating the Stoichiometry of Human Immunodeficiency Virus Entry
-
1901995
-
Magnus C, Rusert P, Bonhoeffer S, Trkola A, Regoes RR, Estimating the Stoichiometry of Human Immunodeficiency Virus Entry. Journal of virology. 2009;83(3):1523–31. doi: 10.1128/JVI.01764-08 19019953
-
(2009)
Journal of virology
, vol.83
, Issue.3
, pp. 1523-1531
-
-
Magnus, C.1
Rusert, P.2
Bonhoeffer, S.3
Trkola, A.4
Regoes, R.R.5
-
13
-
-
84879053104
-
Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates
-
2355017
-
Ivanovic T, Choi JL, Whelan SP, van Oijen AM, Harrison SC, Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife. 2013;2:e00333. doi: 10.7554/eLife.00333 23550179
-
(2013)
eLife
, vol.2
, pp. e00333
-
-
Ivanovic, T.1
Choi, J.L.2
Whelan, S.P.3
van Oijen, A.M.4
Harrison, S.C.5
-
14
-
-
84929648708
-
Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains
-
25833045, Epub 2015/04/03.; PubMed Central PMCID: PMCPmc4442435
-
Earnest JT, Hantak MP, Park JE, Gallagher T, Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains. Journal of virology. 2015;89(11):6093–104. Epub 2015/04/03. doi: 10.1128/JVI.00543-15 25833045; PubMed Central PMCID: PMCPmc4442435.
-
(2015)
Journal of virology
, vol.89
, Issue.11
, pp. 6093-6104
-
-
Earnest, J.T.1
Hantak, M.P.2
Park, J.E.3
Gallagher, T.4
-
15
-
-
66549084069
-
Lateral organization of membrane proteins: tetraspanins spin their web
-
1942614
-
Charrin S, le Naour F, Silvie O, Milhiet PE, Boucheix C, Rubinstein E, Lateral organization of membrane proteins: tetraspanins spin their web. The Biochemical journal. 2009;420(2):133–54. doi: 10.1042/BJ20082422 19426143.
-
(2009)
The Biochemical journal
, vol.420
, Issue.2
, pp. 133-154
-
-
Charrin, S.1
le Naour, F.2
Silvie, O.3
Milhiet, P.E.4
Boucheix, C.5
Rubinstein, E.6
-
17
-
-
33745837412
-
EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins
-
1669061
-
Sala-Valdes M, Ursa A, Charrin S, Rubinstein E, Hemler ME, Sanchez-Madrid F, et al. EWI-2 and EWI-F link the tetraspanin web to the actin cytoskeleton through their direct association with ezrin-radixin-moesin proteins. The Journal of biological chemistry. 2006;281(28):19665–75. doi: 10.1074/jbc.M602116200 16690612.
-
(2006)
The Journal of biological chemistry
, vol.281
, Issue.28
, pp. 19665-19675
-
-
Sala-Valdes, M.1
Ursa, A.2
Charrin, S.3
Rubinstein, E.4
Hemler, M.E.5
Sanchez-Madrid, F.6
-
18
-
-
0034737471
-
Direct Extracellular Contact between Integrin α3β1 and TM4SF Protein CD151
-
1073406
-
Yauch RL, Kazarov AR, Desai B, Lee RT, Hemler ME, Direct Extracellular Contact between Integrin α3β1 and TM4SF Protein CD151. Journal of Biological Chemistry. 2000;275(13):9230–8. doi: 10.1074/jbc.275.13.9230 10734060
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.13
, pp. 9230-9238
-
-
Yauch, R.L.1
Kazarov, A.R.2
Desai, B.3
Lee, R.T.4
Hemler, M.E.5
-
19
-
-
80054732624
-
Functional interplay between tetraspanins and proteases
-
21687991, Epub 2011/06/21
-
Yanez-Mo M, Gutierrez-Lopez MD, Cabanas C, Functional interplay between tetraspanins and proteases. Cellular and molecular life sciences: CMLS. 2011;68(20):3323–35. Epub 2011/06/21. doi: 10.1007/s00018-011-0746-y 21687991.
-
(2011)
Cellular and molecular life sciences: CMLS
, vol.68
, Issue.20
, pp. 3323-3335
-
-
Yanez-Mo, M.1
Gutierrez-Lopez, M.D.2
Cabanas, C.3
-
20
-
-
80052953314
-
The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9
-
21365281, Epub 2011/03/03
-
Gutierrez-Lopez MD, Gilsanz A, Yanez-Mo M, Ovalle S, Lafuente EM, Dominguez C, et al. The sheddase activity of ADAM17/TACE is regulated by the tetraspanin CD9. Cellular and molecular life sciences: CMLS. 2011;68(19):3275–92. Epub 2011/03/03. doi: 10.1007/s00018-011-0639-0 21365281.
-
(2011)
Cellular and molecular life sciences: CMLS
, vol.68
, Issue.19
, pp. 3275-3292
-
-
Gutierrez-Lopez, M.D.1
Gilsanz, A.2
Yanez-Mo, M.3
Ovalle, S.4
Lafuente, E.M.5
Dominguez, C.6
-
21
-
-
33645085833
-
Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS
-
16404722, Epub 2006/01/13
-
Andre M, Le Caer JP, Greco C, Planchon S, El Nemer W, Boucheix C, et al. Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics. 2006;6(5):1437–49. Epub 2006/01/13. doi: 10.1002/pmic.200500180 16404722.
-
(2006)
Proteomics
, vol.6
, Issue.5
, pp. 1437-1449
-
-
Andre, M.1
Le Caer, J.P.2
Greco, C.3
Planchon, S.4
El Nemer, W.5
Boucheix, C.6
-
22
-
-
84899788617
-
CD9 negatively regulates CD26 expression and inhibits CD26-mediated enhancement of invasive potential of malignant mesothelioma cells
-
24466195,..; ():. Epub 2014/01/28.; PubMed Central PMCID: PMCPmc3900581
-
Okamoto T, Iwata S, Yamazaki H, Hatano R, Komiya E, Dang NH, et al. CD9 negatively regulates CD26 expression and inhibits CD26-mediated enhancement of invasive potential of malignant mesothelioma cells. PloS one. 2014;9(1):e86671. Epub 2014/01/28. doi: 10.1371/journal.pone.0086671 24466195; PubMed Central PMCID: PMCPmc3900581.
-
(2014)
PloS one
, vol.9
, Issue.1
, pp. e86671
-
-
Okamoto, T.1
Iwata, S.2
Yamazaki, H.3
Hatano, R.4
Komiya, E.5
Dang, N.H.6
-
23
-
-
57749169272
-
Tetraspanins: push and pull in suppressing and promoting metastasis
-
19078974, Epub 2008/12/17
-
Zoller M, Tetraspanins: push and pull in suppressing and promoting metastasis. Nature reviews Cancer. 2009;9(1):40–55. Epub 2008/12/17. doi: 10.1038/nrc2543 19078974.
-
(2009)
Nature reviews Cancer
, vol.9
, Issue.1
, pp. 40-55
-
-
Zoller, M.1
-
24
-
-
69949118724
-
Type II Transmembrane Serine Proteases
-
1948769
-
Bugge TH, Antalis TM, Wu Q, Type II Transmembrane Serine Proteases. Journal of Biological Chemistry. 2009;284(35):23177–81. doi: 10.1074/jbc.R109.021006 19487698
-
(2009)
Journal of Biological Chemistry
, vol.284
, Issue.35
, pp. 23177-23181
-
-
Bugge, T.H.1
Antalis, T.M.2
Wu, Q.3
-
25
-
-
84887169848
-
Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2
-
2402733
-
Shirato K, Kawase M, Matsuyama S, Middle East Respiratory Syndrome Coronavirus Infection Mediated by the Transmembrane Serine Protease TMPRSS2. Journal of virology. 2013;87(23):12552–61. doi: 10.1128/JVI.01890-13 24027332
-
(2013)
Journal of virology
, vol.87
, Issue.23
, pp. 12552-12561
-
-
Shirato, K.1
Kawase, M.2
Matsuyama, S.3
-
26
-
-
84897480727
-
Rapid generation of a mouse model for Middle East respiratory syndrome
-
2459959
-
Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proceedings of the National Academy of Sciences. 2014;111(13):4970–5. doi: 10.1073/pnas.1323279111 24599590
-
(2014)
Proceedings of the National Academy of Sciences
, vol.111
, Issue.13
, pp. 4970-4975
-
-
Zhao, J.1
Li, K.2
Wohlford-Lenane, C.3
Agnihothram, S.S.4
Fett, C.5
Zhao, J.6
-
27
-
-
79954568274
-
Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint, and their effect on hepatitis C virus infection
-
21343309, Epub 2011/02/24.; PubMed Central PMCID: PMCPMC3077596
-
Montpellier C, Tews BA, Poitrimole J, Rocha-Perugini V, D'Arienzo V, Potel J, et al. Interacting regions of CD81 and two of its partners, EWI-2 and EWI-2wint, and their effect on hepatitis C virus infection. The Journal of biological chemistry. 2011;286(16):13954–65. Epub 2011/02/24. doi: 10.1074/jbc.M111.220103 21343309; PubMed Central PMCID: PMCPMC3077596.
-
(2011)
The Journal of biological chemistry
, vol.286
, Issue.16
, pp. 13954-13965
-
-
Montpellier, C.1
Tews, B.A.2
Poitrimole, J.3
Rocha-Perugini, V.4
D'Arienzo, V.5
Potel, J.6
-
28
-
-
84887312278
-
Dual function of CD81 in influenza virus uncoating and budding
-
24130495,.; ():.; PubMed Central PMCID: PMC3795033
-
He J, Sun E, Bujny MV, Kim D, Davidson MW, Zhuang X, Dual function of CD81 in influenza virus uncoating and budding. PLoS pathogens. 2013;9(10):e1003701. doi: 10.1371/journal.ppat.1003701 24130495; PubMed Central PMCID: PMC3795033.
-
(2013)
PLoS pathogens
, vol.9
, Issue.10
, pp. e1003701
-
-
He, J.1
Sun, E.2
Bujny, M.V.3
Kim, D.4
Davidson, M.W.5
Zhuang, X.6
-
29
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
24157548
-
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F, Genome engineering using the CRISPR-Cas9 system. Nat Protocols. 2013;8(11):2281–308. doi: 10.1038/nprot.2013.143http://www.nature.com/nprot/journal/v8/n11/abs/nprot.2013.143.html#supplementary-information. 24157548
-
(2013)
Nat Protocols
, vol.8
, Issue.11
, pp. 2281-2308
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
Scott, D.A.5
Zhang, F.6
-
30
-
-
28444441957
-
Tetraspanin functions and associated microdomains
-
1631486
-
Hemler ME, Tetraspanin functions and associated microdomains. Nature reviews Molecular cell biology. 2005;6(10):801–11. doi: 10.1038/nrm1736 16314869.
-
(2005)
Nature reviews Molecular cell biology
, vol.6
, Issue.10
, pp. 801-811
-
-
Hemler, M.E.1
-
31
-
-
0035896648
-
Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts
-
1111312
-
Claas C, Stipp CS, Hemler ME, Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. The Journal of biological chemistry. 2001;276(11):7974–84. doi: 10.1074/jbc.M008650200 11113129.
-
(2001)
The Journal of biological chemistry
, vol.276
, Issue.11
, pp. 7974-7984
-
-
Claas, C.1
Stipp, C.S.2
Hemler, M.E.3
-
32
-
-
33751252292
-
Direct observation of individual endogenous protein complexes in situ by proximity ligation
-
Soderberg O, Gullberg M, Jarvius M, Ridderstrale K, Leuchowius K-J, Jarvius J, et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat Meth. 2006;3(12):995–1000. http://www.nature.com/nmeth/journal/v3/n12/suppinfo/nmeth947_S1.html.
-
(2006)
Nat Meth
, vol.3
, Issue.12
, pp. 995-1000
-
-
Soderberg, O.1
Gullberg, M.2
Jarvius, M.3
Ridderstrale, K.4
Leuchowius, K.-J.5
Jarvius, J.6
-
33
-
-
4944235913
-
Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements
-
1505926
-
Zhou H, Bouwman K, Schotanus M, Verweij C, Marrero JA, Dillon D, et al. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biology. 2004;5(4):R28. doi: 10.1186/gb-2004-5-4-r28 15059261
-
(2004)
Genome Biology
, vol.5
, Issue.4
, pp. R28
-
-
Zhou, H.1
Bouwman, K.2
Schotanus, M.3
Verweij, C.4
Marrero, J.A.5
Dillon, D.6
-
34
-
-
85007028307
-
Hepatitis C virus infection propagates through interactions between Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx
-
2793083
-
Grigorov B, Reungoat E, Gentil dit Maurin A, Varbanov M, Blaising J, Michelet M, et al. Hepatitis C virus infection propagates through interactions between Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx. Cellular Microbiology. 2016:e12711. doi: 10.1111/cmi.12711 27930836
-
(2016)
Cellular Microbiology
, pp. e12711
-
-
Grigorov, B.1
Reungoat, E.2
Gentil dit Maurin, A.3
Varbanov, M.4
Blaising, J.5
Michelet, M.6
-
35
-
-
84942878498
-
Plasma Membrane Tetraspanin CD81 Complexes with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR), and Its Levels Are Reduced by PCSK9
-
2619563
-
Le Q-T, Blanchet M, Seidah NG, Labonté P, Plasma Membrane Tetraspanin CD81 Complexes with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR), and Its Levels Are Reduced by PCSK9. The Journal of biological chemistry. 2015;290(38):23385–400. doi: 10.1074/jbc.M115.642991. 26195630
-
(2015)
The Journal of biological chemistry
, vol.290
, Issue.38
, pp. 23385-23400
-
-
Le, Q.-T.1
Blanchet, M.2
Seidah, N.G.3
Labonté, P.4
-
36
-
-
84923219776
-
Protease inhibitors targeting coronavirus and filovirus entry
-
25666761,..;: –. Epub 2015/02/11.; PubMed Central PMCID: PMCPMC4774534
-
Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R., Jr.Nunneley JW, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral research. 2015;116:76–84. Epub 2015/02/11. doi: 10.1016/j.antiviral.2015.01.011 25666761; PubMed Central PMCID: PMCPMC4774534.
-
(2015)
Antiviral research
, vol.116
, pp. 76-84
-
-
Zhou, Y.1
Vedantham, P.2
Lu, K.3
Agudelo, J.4
Carrion, R.5
Nunneley, J.W.6
-
37
-
-
84897500507
-
Mouse Dipeptidyl Peptidase 4 Is Not a Functional Receptor for Middle East Respiratory Syndrome Coronavirus Infection
-
2457439
-
Cockrell AS, Peck KM, Yount BL, Agnihothram SS, Scobey T, Curnes NR, et al. Mouse Dipeptidyl Peptidase 4 Is Not a Functional Receptor for Middle East Respiratory Syndrome Coronavirus Infection. Journal of virology. 2014;88(9):5195–9. doi: 10.1128/JVI.03764-13 24574399
-
(2014)
Journal of virology
, vol.88
, Issue.9
, pp. 5195-5199
-
-
Cockrell, A.S.1
Peck, K.M.2
Yount, B.L.3
Agnihothram, S.S.4
Scobey, T.5
Curnes, N.R.6
-
38
-
-
84897544292
-
Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection
-
24554656, Epub 2014/02/21.; PubMed Central PMCID: PMCPmc3993797
-
Barlan A, Zhao J, Sarkar MK, Li K, McCray PB., Jr.et al. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. Journal of virology. 2014;88(9):4953–61. Epub 2014/02/21. doi: 10.1128/JVI.00161-14 24554656; PubMed Central PMCID: PMCPmc3993797.
-
(2014)
Journal of virology
, vol.88
, Issue.9
, pp. 4953-4961
-
-
Barlan, A.1
Zhao, J.2
Sarkar, M.K.3
Li, K.4
McCray, P.B.5
-
39
-
-
84892604156
-
Characterization of innate responses to influenza virus infection in a novel lung type I epithelial cell model
-
24243730, Epub 2013/11/19.; PubMed Central PMCID: PMCPMC3917066
-
Rosenberger CM, Podyminogin RL, Askovich PS, Navarro G, Kaiser SM, Sanders CJ, et al. Characterization of innate responses to influenza virus infection in a novel lung type I epithelial cell model. The Journal of general virology. 2014;95(Pt 2):350–62. Epub 2013/11/19. doi: 10.1099/vir.0.058438-0 24243730; PubMed Central PMCID: PMCPMC3917066.
-
(2014)
The Journal of general virology
, vol.95
, pp. 350-362
-
-
Rosenberger, C.M.1
Podyminogin, R.L.2
Askovich, P.S.3
Navarro, G.4
Kaiser, S.M.5
Sanders, C.J.6
-
40
-
-
77957019441
-
Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines
-
20709108, Epub 2010/08/17.; PubMed Central PMCID: PMCPmc2956192
-
Whitt MA, Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. Journal of virological methods. 2010;169(2):365–74. Epub 2010/08/17. doi: 10.1016/j.jviromet.2010.08.006 20709108; PubMed Central PMCID: PMCPmc2956192.
-
(2010)
Journal of virological methods
, vol.169
, Issue.2
, pp. 365-374
-
-
Whitt, M.A.1
-
41
-
-
84903435220
-
Evidence for Camel-to-Human Transmission of MERS Coronavirus
-
2489681
-
Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, et al. Evidence for Camel-to-Human Transmission of MERS Coronavirus. New England Journal of Medicine. 2014;370(26):2499–505. doi: 10.1056/NEJMoa1401505 24896817.
-
(2014)
New England Journal of Medicine
, vol.370
, Issue.26
, pp. 2499-2505
-
-
Azhar, E.I.1
El-Kafrawy, S.A.2
Farraj, S.A.3
Hassan, A.M.4
Al-Saeed, M.S.5
Hashem, A.M.6
-
42
-
-
84922417149
-
MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983–1997
-
2542513
-
Marcel AM, Victor Max C, Joerg J, Benjamin M, Mario Y, Anne ML, et al. MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983–1997. Emerging Infectious Disease journal. 2014;20(12):2093. doi: 10.3201/eid2012.141026 25425139
-
(2014)
Emerging Infectious Disease journal
, vol.20
, Issue.12
, pp. 2093
-
-
Marcel, A.M.1
Victor Max, C.2
Joerg, J.3
Benjamin, M.4
Mario, Y.5
Anne, M.L.6
-
43
-
-
84999652028
-
A mouse model for MERS coronavirus-induced acute respiratory distress syndrome
-
27892925,..;:. Epub 2016/11/29
-
Cockrell AS, Yount BL, Scobey T, Jensen K, Douglas M, Beall A, et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nature microbiology. 2016;2:16226. Epub 2016/11/29. doi: 10.1038/nmicrobiol.2016.226 27892925.
-
(2016)
Nature microbiology
, vol.2
, pp. 16226
-
-
Cockrell, A.S.1
Yount, B.L.2
Scobey, T.3
Jensen, K.4
Douglas, M.5
Beall, A.6
-
44
-
-
85022165906
-
Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice
-
2834821
-
Li K, Wohlford-Lenane CL, Channappanavar R, Park J-E, Earnest JT, Bair TB, et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences. 2017. doi: 10.1073/pnas.1619109114 28348219
-
(2017)
Proceedings of the National Academy of Sciences
-
-
Li, K.1
Wohlford-Lenane, C.L.2
Channappanavar, R.3
Park, J.-E.4
Earnest, J.T.5
Bair, T.B.6
-
45
-
-
85008173902
-
Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry
-
2773364
-
Shirato K, Kanou K, Kawase M, Matsuyama S, Clinical Isolates of Human Coronavirus 229E Bypass the Endosome for Cell Entry. Journal of virology. 2016;91(1). doi: 10.1128/jvi.01387-16 27733646
-
(2016)
Journal of virology
, vol.91
, Issue.1
-
-
Shirato, K.1
Kanou, K.2
Kawase, M.3
Matsuyama, S.4
-
46
-
-
84880076973
-
High-Content Analysis of Sequential Events during the Early Phase of Influenza A Virus Infection
-
2387463
-
Banerjee I, Yamauchi Y, Helenius A, Horvath P, High-Content Analysis of Sequential Events during the Early Phase of Influenza A Virus Infection. PloS one. 2013;8(7):e68450. doi: 10.1371/journal.pone.0068450 23874633
-
(2013)
PloS one
, vol.8
, Issue.7
, pp. e68450
-
-
Banerjee, I.1
Yamauchi, Y.2
Helenius, A.3
Horvath, P.4
-
47
-
-
23844448345
-
Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry
-
1608152
-
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P, Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(33):11876–81. doi: 10.1073/pnas.0505577102 16081529
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.33
, pp. 11876-11881
-
-
Simmons, G.1
Gosalia, D.N.2
Rennekamp, A.J.3
Reeves, J.D.4
Diamond, S.L.5
Bates, P.6
-
48
-
-
84992315704
-
Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism
-
2779101
-
Park J-E, Li K, Barlan A, Fehr AR, Perlman S, McCray PB, et al. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proceedings of the National Academy of Sciences. 2016;113(43):12262–7. doi: 10.1073/pnas.1608147113 27791014
-
(2016)
Proceedings of the National Academy of Sciences
, vol.113
, Issue.43
, pp. 12262-12267
-
-
Park, J.-E.1
Li, K.2
Barlan, A.3
Fehr, A.R.4
Perlman, S.5
McCray, P.B.6
-
49
-
-
84994766531
-
Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket
-
27881302,e11
-
Zimmerman B, Kelly B, McMillan Brian J, Seegar Tom CM, Dror Ron O, Kruse Andrew C, et al. Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket. Cell. 2016;167(4):1041–51.e11. doi: 10.1016/j.cell.2016.09.056 27881302
-
(2016)
Cell
, vol.167
, Issue.4
, pp. 1041-1051
-
-
Zimmerman, B.1
Kelly, B.2
McMillan Brian, J.3
Seegar Tom, C.M.4
Dror Ron, O.5
Kruse Andrew, C.6
-
50
-
-
84952865239
-
Differential effect of cholesterol on type I and II feline coronavirus infection
-
26514843, Epub 2015/10/31
-
Takano T, Satomi Y, Oyama Y, Doki T, Hohdatsu T, Differential effect of cholesterol on type I and II feline coronavirus infection. Archives of virology. 2016;161(1):125–33. Epub 2015/10/31. doi: 10.1007/s00705-015-2655-0 26514843.
-
(2016)
Archives of virology
, vol.161
, Issue.1
, pp. 125-133
-
-
Takano, T.1
Satomi, Y.2
Oyama, Y.3
Doki, T.4
Hohdatsu, T.5
-
51
-
-
1542347897
-
Requirements for CEACAMs and Cholesterol during Murine Coronavirus Cell Entry
-
1499068
-
Thorp EB, Gallagher TM, Requirements for CEACAMs and Cholesterol during Murine Coronavirus Cell Entry. Journal of virology. 2004;78(6):2682–92. doi: 10.1128/JVI.78.6.2682-2692.2004 14990688
-
(2004)
Journal of virology
, vol.78
, Issue.6
, pp. 2682-2692
-
-
Thorp, E.B.1
Gallagher, T.M.2
-
52
-
-
54549096776
-
Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2
-
1881489
-
Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H, et al. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008;381(2):215–21. http://dx.doi.org/10.1016/j.virol.2008.08.026. 18814896
-
(2008)
Virology
, vol.381
, Issue.2
, pp. 215-221
-
-
Glende, J.1
Schwegmann-Wessels, C.2
Al-Falah, M.3
Pfefferle, S.4
Qu, X.5
Deng, H.6
-
53
-
-
22544463108
-
Murine Coronavirus Requires Lipid Rafts for Virus Entry and Cell-Cell Fusion but Not for Virus Release
-
1601494
-
Choi KS, Aizaki H, Lai MMC, Murine Coronavirus Requires Lipid Rafts for Virus Entry and Cell-Cell Fusion but Not for Virus Release. Journal of virology. 2005;79(15):9862–71. doi: 10.1128/JVI.79.15.9862-9871.2005 16014947
-
(2005)
Journal of virology
, vol.79
, Issue.15
, pp. 9862-9871
-
-
Choi, K.S.1
Aizaki, H.2
Lai, M.M.C.3
-
54
-
-
3543131798
-
Human Coronavirus 229E Binds to CD13 in Rafts and Enters the Cell through Caveolae
-
1528047
-
Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y, Miyamoto K, et al. Human Coronavirus 229E Binds to CD13 in Rafts and Enters the Cell through Caveolae. Journal of virology. 2004;78(16):8701–8. doi: 10.1128/JVI.78.16.8701-8708.2004 15280478
-
(2004)
Journal of virology
, vol.78
, Issue.16
, pp. 8701-8708
-
-
Nomura, R.1
Kiyota, A.2
Suzaki, E.3
Kataoka, K.4
Ohe, Y.5
Miyamoto, K.6
-
55
-
-
84960090603
-
Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer
-
26855426, http://www.nature.com/nature/journal/v531/n7592/abs/nature16988.html#supplementary-information
-
Walls AC, Tortorici MA, Bosch B-J, Frenz B, Rottier PJM, DiMaio F, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114–7. doi: 10.1038/nature16988http://www.nature.com/nature/journal/v531/n7592/abs/nature16988.html#supplementary-information. 26855426
-
(2016)
Nature
, vol.531
, Issue.7592
, pp. 114-117
-
-
Walls, A.C.1
Tortorici, M.A.2
Bosch, B.-J.3
Frenz, B.4
Rottier, P.J.M.5
DiMaio, F.6
-
56
-
-
84960173062
-
Pre-fusion structure of a human coronavirus spike protein
-
2693569
-
Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118–21. doi: 10.1038/nature17200 26935699
-
(2016)
Nature
, vol.531
, Issue.7592
, pp. 118-121
-
-
Kirchdoerfer, R.N.1
Cottrell, C.A.2
Wang, N.3
Pallesen, J.4
Yassine, H.M.5
Turner, H.L.6
-
57
-
-
84881190964
-
Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4
-
23835475, Epub 2013/07/10.; PubMed Central PMCID: PMCPMC3731569
-
Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013;23(8):986–93. Epub 2013/07/10. doi: 10.1038/cr.2013.92 23835475; PubMed Central PMCID: PMCPMC3731569.
-
(2013)
Cell Res
, vol.23
, Issue.8
, pp. 986-993
-
-
Wang, N.1
Shi, X.2
Jiang, L.3
Zhang, S.4
Wang, D.5
Tong, P.6
-
58
-
-
36048944421
-
Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody
-
17825343, Epub 2007/09/11.; PubMed Central PMCID: PMCPMC2317823
-
Klasse PJ, Modeling how many envelope glycoprotein trimers per virion participate in human immunodeficiency virus infectivity and its neutralization by antibody. Virology. 2007;369(2):245–62. Epub 2007/09/11. doi: 10.1016/j.virol.2007.06.044 17825343; PubMed Central PMCID: PMCPMC2317823.
-
(2007)
Virology
, vol.369
, Issue.2
, pp. 245-262
-
-
Klasse, P.J.1
-
59
-
-
84908065761
-
Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein
-
25288733, Epub 2014/10/08.; PubMed Central PMCID: PMCPmc4210292
-
Millet JK, Whittaker GR, Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(42):15214–9. Epub 2014/10/08. doi: 10.1073/pnas.1407087111 25288733; PubMed Central PMCID: PMCPmc4210292.
-
(2014)
Proceedings of the National Academy of Sciences of the United States of America
, vol.111
, Issue.42
, pp. 15214-15219
-
-
Millet, J.K.1
Whittaker, G.R.2
-
60
-
-
84924359597
-
Inhibition of Proprotein Convertases Abrogates Processing of the Middle Eastern Respiratory Syndrome Coronavirus Spike Protein in Infected Cells but Does Not Reduce Viral Infectivity
-
2505704
-
Gierer S, Müller MA, Heurich A, Ritz D, Springstein BL, Karsten CB, et al. Inhibition of Proprotein Convertases Abrogates Processing of the Middle Eastern Respiratory Syndrome Coronavirus Spike Protein in Infected Cells but Does Not Reduce Viral Infectivity. Journal of Infectious Diseases. 2014;211(6):889–97. doi: 10.1093/infdis/jiu407 25057042
-
(2014)
Journal of Infectious Diseases
, vol.211
, Issue.6
, pp. 889-897
-
-
Gierer, S.1
Müller, M.A.2
Heurich, A.3
Ritz, D.4
Springstein, B.L.5
Karsten, C.B.6
-
61
-
-
65249097210
-
Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
-
1932142
-
Belouzard S, Chu VC, Whittaker GR, Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proceedings of the National Academy of Sciences. 2009;106(14):5871–6. doi: 10.1073/pnas.0809524106 19321428
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, Issue.14
, pp. 5871-5876
-
-
Belouzard, S.1
Chu, V.C.2
Whittaker, G.R.3
-
62
-
-
50149113012
-
Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide
-
18562523, Epub 2008/06/20.; PubMed Central PMCID: PMCPmc2519682
-
Bosch BJ, Bartelink W, Rottier PJ, Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. Journal of virology. 2008;82(17):8887–90. Epub 2008/06/20. doi: 10.1128/JVI.00415-08 18562523; PubMed Central PMCID: PMCPmc2519682.
-
(2008)
Journal of virology
, vol.82
, Issue.17
, pp. 8887-8890
-
-
Bosch, B.J.1
Bartelink, W.2
Rottier, P.J.3
-
63
-
-
33744906756
-
Endosomal Proteolysis by Cathepsins Is Necessary for Murine Coronavirus Mouse Hepatitis Virus Type 2 Spike-Mediated Entry
-
1673191
-
Qiu Z, Hingley ST, Simmons G, Yu C, Das Sarma J, Bates P, et al. Endosomal Proteolysis by Cathepsins Is Necessary for Murine Coronavirus Mouse Hepatitis Virus Type 2 Spike-Mediated Entry. Journal of virology. 2006;80(12):5768–76. doi: 10.1128/JVI.00442-06 16731916
-
(2006)
Journal of virology
, vol.80
, Issue.12
, pp. 5768-5776
-
-
Qiu, Z.1
Hingley, S.T.2
Simmons, G.3
Yu, C.4
Das Sarma, J.5
Bates, P.6
-
64
-
-
0026555037
-
Proteases and proteolysis in the lysosome
-
1740187, Epub 1992/02/15
-
Bohley P, Seglen PO, Proteases and proteolysis in the lysosome. Experientia. 1992;48(2):151–7. Epub 1992/02/15. 1740187.
-
(1992)
Experientia
, vol.48
, Issue.2
, pp. 151-157
-
-
Bohley, P.1
Seglen, P.O.2
-
65
-
-
84877339392
-
The Spike Protein of the Emerging Betacoronavirus EMC Uses a Novel Coronavirus Receptor for Entry, Can Be Activated by TMPRSS2, and Is Targeted by Neutralizing Antibodies
-
2346849
-
Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A, et al. The Spike Protein of the Emerging Betacoronavirus EMC Uses a Novel Coronavirus Receptor for Entry, Can Be Activated by TMPRSS2, and Is Targeted by Neutralizing Antibodies. Journal of virology. 2013;87(10):5502–11. doi: 10.1128/JVI.00128-13 23468491
-
(2013)
Journal of virology
, vol.87
, Issue.10
, pp. 5502-5511
-
-
Gierer, S.1
Bertram, S.2
Kaup, F.3
Wrensch, F.4
Heurich, A.5
Krämer-Kühl, A.6
-
67
-
-
84908261853
-
IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms
-
25256397, Epub 2014/09/27.; PubMed Central PMCID: PMCPMC4189045
-
Wrensch F, Winkler M, Pohlmann S, IFITM proteins inhibit entry driven by the MERS-coronavirus spike protein: evidence for cholesterol-independent mechanisms. Viruses. 2014;6(9):3683–98. Epub 2014/09/27. doi: 10.3390/v6093683 25256397; PubMed Central PMCID: PMCPMC4189045.
-
(2014)
Viruses
, vol.6
, Issue.9
, pp. 3683-3698
-
-
Wrensch, F.1
Winkler, M.2
Pohlmann, S.3
-
68
-
-
79551532447
-
Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus
-
21253575,..; ():.; PubMed Central PMCID: PMC3017121
-
Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS pathogens. 2011;7(1):e1001258. doi: 10.1371/journal.ppat.1001258 21253575; PubMed Central PMCID: PMC3017121.
-
(2011)
PLoS pathogens
, vol.7
, Issue.1
, pp. e1001258
-
-
Huang, I.C.1
Bailey, C.C.2
Weyer, J.L.3
Radoshitzky, S.R.4
Becker, M.M.5
Chiang, J.J.6
-
69
-
-
85017378927
-
-
28393837,.;:. https://www.nature.com/articles/ncomms15092#supplementary-information
-
Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. 2017;8:15092. doi: 10.1038/ncomms15092https://www.nature.com/articles/ncomms15092#supplementary-information. 28393837
-
(2017)
Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains
, vol.8
, pp. 15092
-
-
Yuan, Y.1
Cao, D.2
Zhang, Y.3
Ma, J.4
Qi, J.5
Wang, Q.6
-
70
-
-
0031060150
-
CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus
-
8985321, Epub 1997/01/01.; PubMed Central PMCID: PMCPmc191022
-
Loffler S, Lottspeich F, Lanza F, Azorsa DO, ter Meulen V, Schneider-Schaulies J, CD9, a tetraspan transmembrane protein, renders cells susceptible to canine distemper virus. Journal of virology. 1997;71(1):42–9. Epub 1997/01/01. 8985321; PubMed Central PMCID: PMCPmc191022.
-
(1997)
Journal of virology
, vol.71
, Issue.1
, pp. 42-49
-
-
Loffler, S.1
Lottspeich, F.2
Lanza, F.3
Azorsa, D.O.4
ter Meulen, V.5
Schneider-Schaulies, J.6
-
71
-
-
78649471247
-
HIV-1 Assembly Differentially Alters Dynamics and Partitioning of Tetraspanins and Raft Components
-
2072712
-
Krementsov DN, Rassam P, Margeat E, Roy NH, Schneider-Schaulies J, Milhiet P-E, et al. HIV-1 Assembly Differentially Alters Dynamics and Partitioning of Tetraspanins and Raft Components. Traffic. 2010;11(11):1401–14. doi: 10.1111/j.1600-0854.2010.01111.x 20727121
-
(2010)
Traffic
, vol.11
, Issue.11
, pp. 1401-1414
-
-
Krementsov, D.N.1
Rassam, P.2
Margeat, E.3
Roy, N.H.4
Schneider-Schaulies, J.5
Milhiet, P.-E.6
-
72
-
-
67650886007
-
Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells
-
19458002,; PubMed Central PMCID: PMC2708618
-
Weng J, Krementsov DN, Khurana S, Roy NH, Thali M, Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. Journal of virology. 2009;83(15):7467–74. doi: 10.1128/JVI.00163-09 19458002; PubMed Central PMCID: PMC2708618.
-
(2009)
Journal of virology
, vol.83
, Issue.15
, pp. 7467-7474
-
-
Weng, J.1
Krementsov, D.N.2
Khurana, S.3
Roy, N.H.4
Thali, M.5
-
73
-
-
0031051160
-
Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus tropism
-
9049412, Epub 1997/03/01
-
Willett B, Hosie M, Shaw A, Neil J, Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus tropism. The Journal of general virology. 1997;78 (Pt 3):611–8. Epub 1997/03/01. doi: 10.1099/0022-1317-78-3-611 9049412.
-
(1997)
The Journal of general virology
, vol.78
, pp. 611-618
-
-
Willett, B.1
Hosie, M.2
Shaw, A.3
Neil, J.4
-
74
-
-
0034715523
-
Interaction of CD82 tetraspanin proteins with HTLV-1 envelope glycoproteins inhibits cell-to-cell fusion and virus transmission
-
11040136, Epub 2000/10/21
-
Pique C, Lagaudriere-Gesbert C, Delamarre L, Rosenberg AR, Conjeaud H, Dokhelar MC, Interaction of CD82 tetraspanin proteins with HTLV-1 envelope glycoproteins inhibits cell-to-cell fusion and virus transmission. Virology. 2000;276(2):455–65. Epub 2000/10/21. doi: 10.1006/viro.2000.0538 11040136.
-
(2000)
Virology
, vol.276
, Issue.2
, pp. 455-465
-
-
Pique, C.1
Lagaudriere-Gesbert, C.2
Delamarre, L.3
Rosenberg, A.R.4
Conjeaud, H.5
Dokhelar, M.C.6
-
75
-
-
77954508585
-
Egress of HSV-1 capsid requires the interaction of VP26 and a cellular tetraspanin membrane protein
-
20630051,..; (). Epub 2010/07/16.; PubMed Central PMCID: PMCPMC2913958
-
Wang L, Liu L, Che Y, Wang L, Jiang L, Dong C, et al. Egress of HSV-1 capsid requires the interaction of VP26 and a cellular tetraspanin membrane protein. Virology journal. 2010;7(156). Epub 2010/07/16. doi: 10.1186/1743-422x-7-156 20630051; PubMed Central PMCID: PMCPMC2913958.
-
(2010)
Virology journal
, vol.7
, Issue.156
-
-
Wang, L.1
Liu, L.2
Che, Y.3
Wang, L.4
Jiang, L.5
Dong, C.6
-
76
-
-
0142242265
-
Cell Entry of Hepatitis C Virus Requires a Set of Co-receptors That Include the CD81 Tetraspanin and the SR-B1 Scavenger Receptor
-
1291300
-
Bartosch B, Vitelli A, Granier C, Goujon C, Dubuisson J, Pascale S, et al. Cell Entry of Hepatitis C Virus Requires a Set of Co-receptors That Include the CD81 Tetraspanin and the SR-B1 Scavenger Receptor. Journal of Biological Chemistry. 2003;278(43):41624–30. doi: 10.1074/jbc.M305289200 12913001
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.43
, pp. 41624-41630
-
-
Bartosch, B.1
Vitelli, A.2
Granier, C.3
Goujon, C.4
Dubuisson, J.5
Pascale, S.6
-
77
-
-
84874745296
-
Tetraspanin CD151 mediates papillomavirus type 16 endocytosis
-
23302890,; PubMed Central PMCID: PMC3592167
-
Scheffer KD, Gawlitza A, Spoden GA, Zhang XA, Lambert C, Berditchevski F, et al. Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. Journal of virology. 2013;87(6):3435–46. doi: 10.1128/JVI.02906-12 23302890; PubMed Central PMCID: PMC3592167.
-
(2013)
Journal of virology
, vol.87
, Issue.6
, pp. 3435-3446
-
-
Scheffer, K.D.1
Gawlitza, A.2
Spoden, G.A.3
Zhang, X.A.4
Lambert, C.5
Berditchevski, F.6
-
78
-
-
0032582538
-
Binding of hepatitis C virus to CD81
-
9794763, Epub 1998/10/30
-
Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, et al. Binding of hepatitis C virus to CD81. Science. 1998;282(5390):938–41. Epub 1998/10/30. 9794763.
-
(1998)
Science
, vol.282
, Issue.5390
, pp. 938-941
-
-
Pileri, P.1
Uematsu, Y.2
Campagnoli, S.3
Galli, G.4
Falugi, F.5
Petracca, R.6
-
79
-
-
77950613333
-
Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-claudin-1 associations
-
20069648, Epub 2010/01/14
-
Krieger SE, Zeisel MB, Davis C, Thumann C, Harris HJ, Schnober EK, et al. Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-claudin-1 associations. Hepatology. 2010;51(4):1144–57. Epub 2010/01/14. doi: 10.1002/hep.23445 20069648.
-
(2010)
Hepatology
, vol.51
, Issue.4
, pp. 1144-1157
-
-
Krieger, S.E.1
Zeisel, M.B.2
Davis, C.3
Thumann, C.4
Harris, H.J.5
Schnober, E.K.6
-
80
-
-
84893961755
-
CD81 and Hepatitis C Virus (HCV) Infection
-
2450980
-
Fénéant L, Levy S, Cocquerel L, CD81 and Hepatitis C Virus (HCV) Infection. Viruses. 2014;6(2):535–72. doi: 10.3390/v6020535. 24509809
-
(2014)
Viruses
, vol.6
, Issue.2
, pp. 535-572
-
-
Fénéant, L.1
Levy, S.2
Cocquerel, L.3
-
81
-
-
84895078802
-
The Tetraspanin CD151 in Papillomavirus Infection
-
2455311
-
Scheffer K, Berditchevski F, Florin L, The Tetraspanin CD151 in Papillomavirus Infection. Viruses. 2014;6(2):893. doi: 10.3390/v6020893 24553111
-
(2014)
Viruses
, vol.6
, Issue.2
, pp. 893
-
-
Scheffer, K.1
Berditchevski, F.2
Florin, L.3
-
82
-
-
78650652994
-
A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry
-
21068237, Epub 2010/11/12.; PubMed Central PMCID: PMCPmc3020023
-
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T, A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. Journal of virology. 2011;85(2):873–82. Epub 2010/11/12. doi: 10.1128/JVI.02062-10 21068237; PubMed Central PMCID: PMCPmc3020023.
-
(2011)
Journal of virology
, vol.85
, Issue.2
, pp. 873-882
-
-
Shulla, A.1
Heald-Sargent, T.2
Subramanya, G.3
Zhao, J.4
Perlman, S.5
Gallagher, T.6
-
83
-
-
0034123892
-
A simple method for the rapid generation of recombinant adenovirus vectors
-
10871752, Epub 2000/06/29
-
Anderson RD, Haskell RE, Xia H, Roessler BJ, Davidson BL, A simple method for the rapid generation of recombinant adenovirus vectors. Gene therapy. 2000;7(12):1034–8. Epub 2000/06/29. doi: 10.1038/sj.gt.3301197 10871752.
-
(2000)
Gene therapy
, vol.7
, Issue.12
, pp. 1034-1038
-
-
Anderson, R.D.1
Haskell, R.E.2
Xia, H.3
Roessler, B.J.4
Davidson, B.L.5
-
84
-
-
33947601363
-
Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell
-
1712356
-
Campbell EM, Perez O, Melar M, Hope TJ, Labeling HIV-1 virions with two fluorescent proteins allows identification of virions that have productively entered the target cell. Virology. 2007;360(2):286–93. http://dx.doi.org/10.1016/j.virol.2006.10.025. 17123568
-
(2007)
Virology
, vol.360
, Issue.2
, pp. 286-293
-
-
Campbell, E.M.1
Perez, O.2
Melar, M.3
Hope, T.J.4
|