-
1
-
-
34447564848
-
The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions
-
Beaufort, N., et al. 2007. The human airway trypsin-like protease modulates the urokinase receptor (uPAR, CD87) structure and functions. Am. J. Physiol. Lung Cell. Mol. Physiol. 292:L1263-L1272.
-
(2007)
Am. J. Physiol. Lung Cell. Mol. Physiol.
, vol.292
-
-
Beaufort, N.1
-
2
-
-
65249097210
-
Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites
-
Belouzard, S., V. C. Chu, and G. R. Whittaker. 2009. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. U. S. A. 106:5871-5876.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 5871-5876
-
-
Belouzard, S.1
Chu, V.C.2
Whittaker, G.R.3
-
3
-
-
10444237158
-
Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus
-
Bergeron, E., et al. 2005. Implication of proprotein convertases in the processing and spread of severe acute respiratory syndrome coronavirus. Biochem. Biophys. Res. Commun. 326:554-563.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.326
, pp. 554-563
-
-
Bergeron, E.1
-
4
-
-
77956869264
-
TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells
-
Bertram, S., et al. 2010. TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread of influenza virus in Caco-2 cells. J. Virol. 84:10016-10025.
-
(2010)
J. Virol.
, vol.84
, pp. 10016-10025
-
-
Bertram, S.1
-
5
-
-
77956639165
-
Novel insights into proteolytic cleavage of influenza virus hemagglutinin
-
Bertram, S., I. Glowacka, I. Steffen, A. Kuhl, and S. Pöhlmann. 2010. Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev. Med. Virol. 20:298-310.
-
(2010)
Rev. Med. Virol.
, vol.20
, pp. 298-310
-
-
Bertram, S.1
Glowacka, I.2
Steffen, I.3
Kuhl, A.4
Pöhlmann, S.5
-
6
-
-
50149113012
-
Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide
-
Bosch, B. J., W. Bartelink, and P. J. Rottier. 2008. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 82:8887-8890.
-
(2008)
J. Virol.
, vol.82
, pp. 8887-8890
-
-
Bosch, B.J.1
Bartelink, W.2
Rottier, P.J.3
-
7
-
-
33748950305
-
Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium
-
Böttcher, E., et al. 2006. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J. Virol. 80:9896-9898.
-
(2006)
J. Virol.
, vol.80
, pp. 9896-9898
-
-
Böttcher, E.1
-
8
-
-
78951481964
-
Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin- activating protease TMPRSS2
-
Böttcher-Friebertshauser, E., D. A. Stein, H. D. Klenk, and W. Garten. 2011. Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin- activating protease TMPRSS2. J. Virol. 85:1554-1562.
-
(2011)
J. Virol.
, vol.85
, pp. 1554-1562
-
-
Böttcher-Friebertshauser, E.1
Stein, D.A.2
Klenk, H.D.3
Garten, W.4
-
9
-
-
63149086109
-
Proteolytic activation of the 1918 influenza virus hemagglutinin
-
Chaipan, C., et al. 2009. Proteolytic activation of the 1918 influenza virus hemagglutinin. J. Virol. 83:3200-3211.
-
(2009)
J. Virol.
, vol.83
, pp. 3200-3211
-
-
Chaipan, C.1
-
10
-
-
67650079412
-
Type II transmembrane serine proteases in cancer and viral infections
-
Choi, S. Y., S. Bertram, I. Glowacka, Y. W. Park, and S. Pöhlmann. 2009. Type II transmembrane serine proteases in cancer and viral infections. Trends Mol. Med. 15:303-312.
-
(2009)
Trends Mol. Med.
, vol.15
, pp. 303-312
-
-
Choi, S.Y.1
Bertram, S.2
Glowacka, I.3
Park, Y.W.4
Pöhlmann, S.5
-
11
-
-
0028842207
-
Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes
-
Connor, R. I., B. K. Chen, S. Choe, and N. R. Landau. 1995. Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 206:935-944.
-
(1995)
Virology
, vol.206
, pp. 935-944
-
-
Connor, R.I.1
Chen, B.K.2
Choe, S.3
Landau, N.R.4
-
12
-
-
0141705294
-
Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNA-vaccinated mice
-
Gao, F., et al. 2003. Codon usage optimization of HIV type 1 subtype C gag, pol, env, and nef genes: in vitro expression and immune responses in DNAvaccinated mice. AIDS Res. Hum. Retroviruses 19:817-823.
-
(2003)
AIDS Res. Hum. Retroviruses
, vol.19
, pp. 817-823
-
-
Gao, F.1
-
13
-
-
73849149813
-
Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63
-
Glowacka, I., et al. 2010. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J. Virol. 84:1198-1205.
-
(2010)
J. Virol.
, vol.84
, pp. 1198-1205
-
-
Glowacka, I.1
-
14
-
-
79954628266
-
Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response
-
Glowacka, I., et al. 2011. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85:4122-4134.
-
(2011)
J. Virol.
, vol.85
, pp. 4122-4134
-
-
Glowacka, I.1
-
15
-
-
0141889936
-
Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China
-
Guan, Y., et al. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276-278.
-
(2003)
Science
, vol.302
, pp. 276-278
-
-
Guan, Y.1
-
16
-
-
2642539225
-
Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
-
Hamming, I., et al. 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203:631-637.
-
(2004)
J. Pathol.
, vol.203
, pp. 631-637
-
-
Hamming, I.1
-
17
-
-
4644338506
-
Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines
-
He, Y., et al. 2004. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J. Immunol. 173:4050-4057.
-
(2004)
J. Immunol.
, vol.173
, pp. 4050-4057
-
-
He, Y.1
-
18
-
-
2942548115
-
Susceptibility to SARS coronavirus S proteindriven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor
-
Hofmann, H., et al. 2004. Susceptibility to SARS coronavirus S proteindriven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem. Biophys. Res. Commun. 319:1216-1221.
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.319
, pp. 1216-1221
-
-
Hofmann, H.1
-
19
-
-
2642534316
-
S protein of severe acute respiratory syndromeassociated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients
-
Hofmann, H., et al. 2004. S protein of severe acute respiratory syndromeassociated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J. Virol. 78:6134-6142.
-
(2004)
J. Virol.
, vol.78
, pp. 6134-6142
-
-
Hofmann, H.1
-
20
-
-
4644323974
-
Cellular entry of the SARS coronavirus
-
Hofmann, H., and S. Pöhlmann. 2004. Cellular entry of the SARS coronavirus. Trends Microbiol. 12:466-472.
-
(2004)
Trends Microbiol.
, vol.12
, pp. 466-472
-
-
Hofmann, H.1
Pöhlmann, S.2
-
21
-
-
33748648372
-
Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors
-
Hofmann, H., et al. 2006. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J. Virol. 80:8639-8652.
-
(2006)
J. Virol.
, vol.80
, pp. 8639-8652
-
-
Hofmann, H.1
-
22
-
-
21844460785
-
Angiotensin-converting enzyme 2 protects from severe acute lung failure
-
Imai, Y., et al. 2005. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112-116.
-
(2005)
Nature
, vol.436
, pp. 112-116
-
-
Imai, Y.1
-
23
-
-
33747590965
-
Technical innovations for the automated identification of gel-separated proteins by MALDITOF mass spectrometry
-
Jahn, O., D. Hesse, M. Reinelt, and H. D. Kratzin. 2006. Technical innovations for the automated identification of gel-separated proteins by MALDITOF mass spectrometry. Anal. Bioanal. Chem. 386:92-103.
-
(2006)
Anal. Bioanal. Chem.
, vol.386
, pp. 92-103
-
-
Jahn, O.1
Hesse, D.2
Reinelt, M.3
Kratzin, H.D.4
-
24
-
-
42249086794
-
TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition
-
Jung, H., et al. 2008. TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition. Oncogene 27:2635-2647.
-
(2008)
Oncogene
, vol.27
, pp. 2635-2647
-
-
Jung, H.1
-
25
-
-
23844463115
-
A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury
-
Kuba, K., et al. 2005. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11:875-879.
-
(2005)
Nat. Med.
, vol.11
, pp. 875-879
-
-
Kuba, K.1
-
26
-
-
0042198682
-
Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome
-
Kuiken, T., et al. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263-270.
-
(2003)
Lancet
, vol.362
, pp. 263-270
-
-
Kuiken, T.1
-
27
-
-
25444531712
-
Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats
-
Lau, S. K., et al. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. U. S. A. 102:14040-14045.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 14040-14045
-
-
Lau, S.K.1
-
28
-
-
0344395657
-
Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus
-
Li, W., et al. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450-454.
-
(2003)
Nature
, vol.426
, pp. 450-454
-
-
Li, W.1
-
29
-
-
27344438916
-
Bats are natural reservoirs of SARS-like coronaviruses
-
Li, W., et al. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676-679.
-
(2005)
Science
, vol.310
, pp. 676-679
-
-
Li, W.1
-
30
-
-
78649407547
-
Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2
-
Matsuyama, S., et al. 2010. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84:12658-12664.
-
(2010)
J. Virol.
, vol.84
, pp. 12658-12664
-
-
Matsuyama, S.1
-
31
-
-
38949084217
-
SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells
-
Mossel, E. C., et al. 2008. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology 372:127-135.
-
(2008)
Virology
, vol.372
, pp. 127-135
-
-
Mossel, E.C.1
-
32
-
-
10944238037
-
Severe acute respiratory syndrome
-
Peiris, J. S., Y. Guan, and K. Y. Yuen. 2004. Severe acute respiratory syndrome. Nat. Med. 10:S88-S97.
-
(2004)
Nat. Med.
, vol.10
-
-
Peiris, J.S.1
Guan, Y.2
Yuen, K.Y.3
-
33
-
-
0346750858
-
The severe acute respiratory syndrome
-
Peiris, J. S., K. Y. Yuen, A. D. Osterhaus, and K. Stohr. 2003. The severe acute respiratory syndrome. N. Engl. J. Med. 349:2431-2441.
-
(2003)
N. Engl. J. Med.
, vol.349
, pp. 2431-2441
-
-
Peiris, J.S.1
Yuen, K.Y.2
Osterhaus, A.D.3
Stohr, K.4
-
34
-
-
0031055562
-
Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1
-
Pulford, K., et al. 1997. Detection of anaplastic lymphoma kinase (ALK) and nucleolar protein nucleophosmin (NPM)-ALK proteins in normal and neoplastic cells with the monoclonal antibody ALK1. Blood 89:1394-1404.
-
(1997)
Blood
, vol.89
, pp. 1394-1404
-
-
Pulford, K.1
-
35
-
-
0035167046
-
Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness
-
Scott, H. S., et al. 2001. Insertion of beta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat. Genet. 27:59-63.
-
(2001)
Nat. Genet.
, vol.27
, pp. 59-63
-
-
Scott, H.S.1
-
36
-
-
77954930316
-
A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and Ebola pseudotype virus infection into human embryonic kidney 293T cells
-
Shah, P. P., et al. 2010. A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and Ebola pseudotype virus infection into human embryonic kidney 293T cells. Mol. Pharmacol. 78:319-324.
-
(2010)
Mol. Pharmacol.
, vol.78
, pp. 319-324
-
-
Shah, P.P.1
-
37
-
-
50149096147
-
Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2
-
Shirogane, Y., et al. 2008. Efficient multiplication of human metapneumovirus in Vero cells expressing the transmembrane serine protease TMPRSS2. J. Virol. 82:8942-8946.
-
(2008)
J. Virol.
, vol.82
, pp. 8942-8946
-
-
Shirogane, Y.1
-
38
-
-
78650652994
-
A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry
-
Shulla, A., et al. 2011. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85:873-882.
-
(2011)
J. Virol.
, vol.85
, pp. 873-882
-
-
Shulla, A.1
-
39
-
-
79954628858
-
Different host cell proteases activate the SARScoronavirus spike-protein for cell-cell and virus-cell fusion
-
Simmons, G., et al. 2011. Different host cell proteases activate the SARScoronavirus spike-protein for cell-cell and virus-cell fusion. Virology 413: 265-274.
-
(2011)
Virology
, vol.413
, pp. 265-274
-
-
Simmons, G.1
-
40
-
-
23844448345
-
Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry
-
Simmons, G., et al. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. U. S. A. 102:11876-11881.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 11876-11881
-
-
Simmons, G.1
-
41
-
-
0037227457
-
DC-SIGN and DC-SIGNR bind Ebola glycoproteins and enhance infection of macrophages and endothelial cells
-
Simmons, G., et al. 2003. DC-SIGN and DC-SIGNR bind Ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305:115-123.
-
(2003)
Virology
, vol.305
, pp. 115-123
-
-
Simmons, G.1
-
42
-
-
1642488368
-
Characterization of severe acute respiratory syndrome- associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry
-
Simmons, G., et al. 2004. Characterization of severe acute respiratory syndrome- associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. U. S. A. 101:4240-4245.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 4240-4245
-
-
Simmons, G.1
-
43
-
-
1642509113
-
SARS-beginning to understand a new virus
-
Stadler, K., et al. 2003. SARS-beginning to understand a new virus. Nat. Rev. Microbiol. 1:209-218.
-
(2003)
Nat. Rev. Microbiol.
, vol.1
, pp. 209-218
-
-
Stadler, K.1
-
44
-
-
0035087724
-
Localization of human airway trypsin-like protease in the airway: an immunohistochemical study
-
Takahashi, M., et al. 2001. Localization of human airway trypsin-like protease in the airway: an immunohistochemical study. Histochem. Cell Biol. 115:181-187.
-
(2001)
Histochem. Cell Biol.
, vol.115
, pp. 181-187
-
-
Takahashi, M.1
-
45
-
-
33746919630
-
Jaw1/LRMP, a germinal centre-associated marker for the immunohistological study of B-cell lymphomas
-
Tedoldi, S., et al. 2006. Jaw1/LRMP, a germinal centre-associated marker for the immunohistological study of B-cell lymphomas. J. Pathol. 209:454-463.
-
(2006)
J. Pathol.
, vol.209
, pp. 454-463
-
-
Tedoldi, S.1
-
46
-
-
3242709581
-
Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2)
-
To, K. F., and A. W. Lo. 2004. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J. Pathol. 203:740-743.
-
(2004)
J. Pathol.
, vol.203
, pp. 740-743
-
-
To, K.F.1
Lo, A.W.2
-
47
-
-
10744231558
-
Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases
-
To, K. F., et al. 2004. Tissue and cellular tropism of the coronavirus associated with severe acute respiratory syndrome: an in-situ hybridization study of fatal cases. J. Pathol. 202:157-163.
-
(2004)
J. Pathol.
, vol.202
, pp. 157-163
-
-
To, K.F.1
-
48
-
-
38849114449
-
SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway
-
Wang, H., et al. 2008. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 18:290-301.
-
(2008)
Cell Res.
, vol.18
, pp. 290-301
-
-
Wang, H.1
-
49
-
-
77955424541
-
Substrate specificity and inhibitory study of human airway trypsin-like protease
-
Wysocka, M., et al. 2010. Substrate specificity and inhibitory study of human airway trypsin-like protease. Bioorg. Med. Chem. 18:5504-5509.
-
(2010)
Bioorg. Med. Chem.
, vol.18
, pp. 5504-5509
-
-
Wysocka, M.1
|