메뉴 건너뛰기




Volumn 56, Issue 4, 2014, Pages 601-606

Risk prediction with machine learning and regression methods

Author keywords

Machine learning; Prediction; Regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; REGRESSION ANALYSIS; RISK PERCEPTION;

EID: 84903607237     PISSN: 03233847     EISSN: 15214036     Source Type: Journal    
DOI: 10.1002/bimj.201300297     Document Type: Note
Times cited : (70)

References (26)
  • 1
    • 9644265270 scopus 로고    scopus 로고
    • Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality
    • Austin, P. C. and Tu, J. V. (2004). Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality. Journal of Clinical Epidemiology 57, 1138-1146.
    • (2004) Journal of Clinical Epidemiology , vol.57 , pp. 1138-1146
    • Austin, P.C.1    Tu, J.V.2
  • 2
    • 84865535937 scopus 로고    scopus 로고
    • Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods?
    • Austin, P. C., Lee, D. S., Steyerberg, E. W. and Tu, J. V. (2012). Regression trees for predicting mortality in patients with cardiovascular disease: what improvement is achieved by using ensemble-based methods? Biometrical Journal 54, 657-673.
    • (2012) Biometrical Journal , vol.54 , pp. 657-673
    • Austin, P.C.1    Lee, D.S.2    Steyerberg, E.W.3    Tu, J.V.4
  • 3
    • 84872804715 scopus 로고    scopus 로고
    • Predictive accuracy of risk factors and markers: a simulation study of the effect of novel markers on different performance measures for logistic regression models
    • Austin, P. C. and Steyerberg, E. W. (2013). Predictive accuracy of risk factors and markers: a simulation study of the effect of novel markers on different performance measures for logistic regression models. Statistics in Medicine 32, 661-672.
    • (2013) Statistics in Medicine , vol.32 , pp. 661-672
    • Austin, P.C.1    Steyerberg, E.W.2
  • 4
    • 84875243337 scopus 로고    scopus 로고
    • Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes
    • Austin, P. C., Tu, J. V., Ho, J. E., Levy, D. and Lee, D. S. (2013). Using methods from the data-mining and machine-learning literature for disease classification and prediction: a case study examining classification of heart failure subtypes. Journal of Clinical Epidemiology 66, 398-407.
    • (2013) Journal of Clinical Epidemiology , vol.66 , pp. 398-407
    • Austin, P.C.1    Tu, J.V.2    Ho, J.E.3    Levy, D.4    Lee, D.S.5
  • 5
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures
    • Breiman, L. (2001). Statistical modeling: the two cultures. Statistical Science 16, 199-215.
    • (2001) Statistical Science , vol.16 , pp. 199-215
    • Breiman, L.1
  • 8
    • 84903648854 scopus 로고    scopus 로고
    • Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory
    • Kruppa, J., Liu, Y., Biau, G., Kohler, M., König, I. R., Malley, J. D. and Ziegler, A. (2014a). Probability estimation with machine learning methods for dichotomous and multicategory outcome: Theory. Biometrical Journal 56, 534-563.
    • (2014) Biometrical Journal , vol.56 , pp. 534-563
    • Kruppa, J.1    Liu, Y.2    Biau, G.3    Kohler, M.4    König, I.R.5    Malley, J.D.6    Ziegler, A.7
  • 9
    • 84903610080 scopus 로고    scopus 로고
    • Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications
    • Kruppa, J., Liu, Y., Diener, H. C., Holste, T., Weimar, C., König, I. R. and Ziegler, A. (2014b). Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications. Biometrical Journal 56, 564-583.
    • (2014) Biometrical Journal , vol.56 , pp. 564-583
    • Kruppa, J.1    Liu, Y.2    Diener, H.C.3    Holste, T.4    Weimar, C.5    König, I.R.6    Ziegler, A.7
  • 14
    • 0027081755 scopus 로고
    • A bootstrap resampling procedure for model building: application to the Cox regression model
    • Sauerbrei, W. and Schumacher, M. (1992). A bootstrap resampling procedure for model building: application to the Cox regression model. Statistics in Medicine 11, 2093-2109.
    • (1992) Statistics in Medicine , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, M.2
  • 15
    • 0033213971 scopus 로고    scopus 로고
    • Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis
    • Steyerberg, E. W., Eijkemans, M. J. and Habbema, J. D. (1999). Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis. Journal of Clinical Epidemiology 52, 935-942.
    • (1999) Journal of Clinical Epidemiology , vol.52 , pp. 935-942
    • Steyerberg, E.W.1    Eijkemans, M.J.2    Habbema, J.D.3
  • 16
    • 0034732710 scopus 로고    scopus 로고
    • Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets
    • Steyerberg, E. W., Eijkemans, M. J., Harrell, F. E., Jr. and Habbema, J. D. (2000). Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Statistics in Medicine 19, 1059-1079.
    • (2000) Statistics in Medicine , vol.19 , pp. 1059-1079
    • Steyerberg, E.W.1    Eijkemans, M.J.2    Harrell Jr., F.E.3    Habbema, J.D.4
  • 23
    • 77957988487 scopus 로고    scopus 로고
    • Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models
    • Van Calster, B., Valentin, L., Van Holsbeke, C., Testa, A. C., Bourne, T., Van Huffel, S. and Timmerman, D. (2010). Polytomous diagnosis of ovarian tumors as benign, borderline, primary invasive or metastatic: development and validation of standard and kernel-based risk prediction models. BMC Medical Research Methodology 10, 96.
    • (2010) BMC Medical Research Methodology , vol.10 , pp. 96
    • Van Calster, B.1    Valentin, L.2    Van Holsbeke, C.3    Testa, A.C.4    Bourne, T.5    Van Huffel, S.6    Timmerman, D.7
  • 26
    • 0034736564 scopus 로고    scopus 로고
    • Validation. calibration, revision and combination of prognostic survival models
    • Van Houwelingen, H. C. (2000). Validation. calibration, revision and combination of prognostic survival models. Statistics in Medicine 19, 3401-3415.
    • (2000) Statistics in Medicine , vol.19 , pp. 3401-3415
    • Van Houwelingen, H.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.